• 제목/요약/키워드: 패턴판별

검색결과 331건 처리시간 0.024초

A Method for the Classification of Water Pollutants using Machine Learning Model with Swimming Activities Videos of Caenorhabditis elegans (예쁜꼬마선충의 수영 행동 영상과 기계학습 모델을 이용한 수질 오염 물질 구분 방법)

  • Kang, Seung-Ho;Jeong, In-Seon;Lim, Hyeong-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제25권7호
    • /
    • pp.903-909
    • /
    • 2021
  • Caenorhabditis elegans whose DNA sequence was completely identified is a representative species used in various research fields such as gene functional analysis and animal behavioral research. In the mean time, many researches on the bio-monitoring system to determine whether water is contaminated or not by using the swimming activities of nematodes. In this paper, we show the possibility of using the swimming activities of C. elegans in the development of a machine learning based bio-monitoring system which identifies chemicals that cause water pollution. To characterize swimming activities of nematode, BLS entropy is computed for the nematode in a frame. And, BLS entropy profile, an assembly of entropies, are classified into several patterns using clustering algorithms. Finally these patterns are used to construct data sets. We recorded images of swimming behavior of nematodes in the arenas in which formaldehyde, benzene and toluene were added at a concentration of 0.1 ppm, respectively, and evaluate the performance of the developed HMM.

Development of Reinforcement Learning-based Obstacle Avoidance toward Autonomous Mobile Robots for an Industrial Environment (산업용 자율 주행 로봇에서의 격자 지도를 사용한 강화학습 기반 회피 경로 생성기 개발)

  • Yang, Jeong-Yean
    • The Journal of the Korea Contents Association
    • /
    • 제19권3호
    • /
    • pp.72-79
    • /
    • 2019
  • Autonomous locomotion has two essential functionalities: mapping builds and updates maps by uncertain position information and measured sensor inputs, and localization is to find the positional information with the inaccurate map and the sensor information. In addition, obstacle detection, avoidance, and path designs are necessarily required for autonomous locomotion by combining the probabilistic methods based on uncertain locations. The sensory inputs, which are measured by a metric-based scanner, have difficulties of distinguishing moving obstacles like humans from static objects like walls in given environments. This paper proposes the low resolution grid map combined with reinforcement learning, which is compared with the conventional recognition method for detecting static and moving objects to generate obstacle avoiding path. Finally, the proposed method is verified with experimental results.

Driver Drowsiness Detection System using Image Recognition and Bio-signals (영상 인식 및 생체 신호를 이용한 운전자 졸음 감지 시스템)

  • Lee, Min-Hye;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제26권6호
    • /
    • pp.859-864
    • /
    • 2022
  • Drowsy driving, one of the biggest causes of traffic accidents every year, is accompanied by various factors. As a general method to check whether or not there is drowsiness, a method of identifying a driver's expression and driving pattern, and a method of analyzing bio-signals are being studied. This paper proposes a driver fatigue detection system using deep learning technology and bio-signal measurement technology. As the first step in the proposed method, deep learning is used to detect the driver's eye shape, yawning presence, and body movement to detect drowsiness. In the second stage, it was designed to increase the accuracy of the system by identifying the driver's fatigue state using the pulse wave signal and body temperature. As a result of the experiment, it was possible to reliably determine the driver's drowsiness and fatigue in real-time images.

A Black Ice Detection Method Using Infrared Camera and YOLO (적외선 카메라와 YOLO를 사용한 블랙아이스 탐지 방법)

  • Kim, Hyung Gyun;Jang, Min Seok;Lee, Yon Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제25권12호
    • /
    • pp.1874-1881
    • /
    • 2021
  • Black ice, which occurs mainly on the road, vehicle traffic bridges and tunnel entrances due to the sub-zero temperature due to the slip of the road due to heavy snow, is not recognized because the image of asphalt is transmitted in the driver's view, so the vehicle loses braking power because it causes serious loss of life and property. In this paper, we propose a method to identify the black ice by using infrared camera and to identify the road condition by using deep learning to compensate for the disadvantages of existing black ice detection methods (artificial satellite imaging, checking the pattern of slip by ultrasonic reception, measuring the temperature of the road surface, and checking the difference in friction force of the tire during vehicle driving) and to reduce the size of the sensor to detect black ice.

A Study on Data-driven Modeling Employing Stratification-related Physical Variables for Reservoir Water Quality Prediction (취수원 수질예측을 위한 성층 물리변수 활용 데이터 기반 모델링 연구)

  • Hyeon June Jang;Ji Young Jung;Kyung Won Joo;Choong Sung Yi;Sung Hoon Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.143-143
    • /
    • 2023
  • 최근 대청댐('17), 평림댐('19) 등 광역 취수원에서 망간의 먹는 물 수질기준(0.05mg/L 이하) 초과 사례가 발생되어, 다수의 민원이 제기되는 등 취수원의 망간 관리 중요성이 부각되고 있다. 특히, 동절기 전도(Turn-over)시기에 고농도 망간이 발생되는 경우가 많은데, 현재 정수장에서는 망간을 처리하기 위해 유입구간에 필터를 설치하고 주기적으로 교체하는 방식으로 처리하고 있다. 그러나 단기간에 고농도 망간 다량 유입 시 처리용량의 한계 등 정수장에서의 공정관리가 어려워지므로 사전 예측에 의한 대응 체계 고도화가 필요한 실정이다. 본 연구는 광역취수원인 주암댐을 대상으로 망간 예측의 정확도 향상 및 예측기간 확대를 위해 다양한 머신러닝 기법들을 적용하여 비교 분석하였으며, 독립변수 및 초매개변수 최적화를 진행하여 모형의 정확도를 개선하였다. 머신러닝 모형은 수심별 탁도, 저수위, pH, 수온, 전기전도도, DO, 클로로필-a, 기상, 수문 자료 등의 독립변수와 화순정수장에 유입된 망간 농도를 종속변수로 각 변수에 해당하는 실측치를 학습데이터로 사용하였다. 그리고 데이터기반 모형의 정확도를 개선하기 위해서 성층의 수준을 판별하는 지표로서 PEA(Potential Energy Anomaly)를 도입하여 데이터 분석에 활용하고자 하였다. 분석 결과, 망간 유입률은 계절 주기에 따라 농도가 달라지는 것을 확인하였고 동절기 전도시점과 하절기 장마기간 난류생성 시기에 저층의 고농도 망간이 유입이 되는 것을 분석하였다. 또한, 두 시기의 망간 농도의 변화 패턴이 상이하므로 예측 모델은 각 계절별로 구축해 학습을 진행함으로써 예측의 정확도를 향상할 수 있었다. 다양한 머신러닝 모델을 구축하여 성능 비교를 진행한 결과, 동절기에는 Gradient Boosting Machine, 하절기에는 eXtreme Gradient Boosting의 기법이 우수하여 추론 모델로 활용하고자 하였다. 선정 모델을 통한 단기 수질예측 결과, 전도현상 발생 시기에 대한 추종 및 예측력이 기존의 데이터 모형만 적용했을 경우대비 약 15% 이상 예측 효율이 향상된 것으로 나타났다. 본 연구는 머신러닝 모델을 활용한 망간 농도 예측으로 정수장의 신속한 대응 체계 마련을 지원하고, 수처리 공정의 효율성을 높이는 데 기여할 것으로 기대되며, 후속 연구로 과거 시계열 자료 활용 및 물리모형과의 연결 등을 통해 모델의 신뢰성을 제고 할 계획이다.

  • PDF

Factors of Information Overload and Their Associations with News Consumption Patterns: The Roles of Tipping Point (정보과잉 요인과 뉴스 소비 패턴의 관계: 티핑 포인트의 역할을 중심으로)

  • Sun Kyong, Lee;William Howe;Kyun Soo Kim
    • Information Systems Review
    • /
    • 제25권3호
    • /
    • pp.1-26
    • /
    • 2023
  • A theoretical model of information overload (Jackson and Farzaneh, 2012) with its three influential components (i.e., time, technology, and social networks) was empirically tested in the context of news consumption behavior considered as a communicative outcome. Using a national sample of South Korean adults (N = 1166), data analyses identified perceived information overload and large/diverse social networks positively associated with active and passive news consumption. Findings may imply the existence of individually varying cognitive threshold (i.e., tipping point), if crossed individuals cannot process information any further. News consumers may keep searching and receiving information to verify factuality of news even when they feel overloaded.

Relationships on Magnitude and Frequency of Freshwater Discharge and Rainfall in the Altered Yeongsan Estuary (영산강 하구의 방류와 강우의 규모 및 빈도 상관성 분석)

  • Rhew, Ho-Sang;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • 제16권4호
    • /
    • pp.223-237
    • /
    • 2011
  • The intermittent freshwater discharge has an critical influence upon the biophysical environments and the ecosystems of the Yeongsan Estuary where the estuary dam altered the continuous mixing of saltwater and freshwater. Though freshwater discharge is controlled by human, the extreme events are mainly driven by the heavy rainfall in the river basin, and provide various impacts, depending on its magnitude and frequency. This research aims to evaluate the magnitude and frequency of extreme freshwater discharges, and to establish the magnitude-frequency relationships between basin-wide rainfall and freshwater inflow. Daily discharge and daily basin-averaged rainfall from Jan 1, 1997 to Aug 31, 2010 were used to determine the relations between discharge and rainfall. Consecutive daily discharges were grouped into independent events using well-defined event-separation algorithm. Partial duration series were extracted to obtain the proper probability distribution function for extreme discharges and corresponding rainfall events. Extreme discharge events over the threshold 133,656,000 $m^3$ count up to 46 for 13.7y years, following the Weibull distribution with k=1.4. The 3-day accumulated rain-falls which occurred one day before peak discharges (1day-before-3day -sum rainfall), are determined as a control variable for discharge, because their magnitude is best correlated with that of the extreme discharge events. The minimum value of the corresponding 1day-before-3day-sum rainfall, 50.98mm is initially set to a threshold for the selection of discharge-inducing rainfall cases. The number of 1day-before-3day-sum rainfall groups after selection, however, exceeds that of the extreme discharge events. The canonical discriminant analysis indicates that water level over target level (-1.35 m EL.) can be useful to divide the 1day-before-3day-sum rainfall groups into discharge-induced and non-discharge ones. It also shows that the newly-set threshold, 104mm, can just separate these two cases without errors. The magnitude-frequency relationships between rainfall and discharge are established with the newly-selected lday-before-3day-sum rainfalls: $D=1.111{\times}10^8+1.677{\times}10^6{\overline{r_{3day}}$, (${\overline{r_{3day}}{\geqq}104$, $R^2=0.459$), $T_d=1.326T^{0.683}_{r3}$, $T_d=0.117{\exp}[0.0155{\overline{r_{3day}}]$, where D is the quantity of discharge, ${\overline{r_{3day}}$ the 1day-before-3day-sum rainfall, $T_{r3}$ and $T_d$, are respectively return periods of 1day-before-3day-sum rainfall and freshwater discharge. These relations provide the framework to evaluate the effect of freshwater discharge on estuarine flow structure, water quality, responses of ecosystems from the perspective of magnitude and frequency.

EEG based Cognitive Load Measurement for e-learning Application (이러닝 적용을 위한 뇌파기반 인지부하 측정)

  • Kim, Jun;Song, Ki-Sang
    • Korean Journal of Cognitive Science
    • /
    • 제20권2호
    • /
    • pp.125-154
    • /
    • 2009
  • This paper describes the possibility of human physiological data, especially brain-wave activity, to detect cognitive overload, a phenomenon that may occur while learner uses an e-learning system. If it is found that cognitive overload to be detectable, providing appropriate feedback to learners may be possible. To illustrate the possibility, while engaging in cognitive activities, cognitive load levels were measured by EEG (electroencephalogram) to seek detection of cognitive overload. The task given to learner was a computerized listening and recall test designed to measure working memory capacity, and the test had four progressively increasing degrees of difficulty. Eight male, right-handed, university students were asked to answer 4 sets of tests and each test took from 61 seconds to 198 seconds. A correction ratio was then calculated and EEG results analyzed. The correction ratio of listening and recall tests were 84.5%, 90.6%, 62.5% and 56.3% respectively, and the degree of difficulty had statistical significance. The data highlighted learner cognitive overload on test level of 3 and 4, the higher level tests. Second, the SEF-95% value was greater on test3 and 4 than on tests 1 and 2 indicating that tests 3 and 4 imposed greater cognitive load on participants. Third, the relative power of EEG gamma wave rapidly increased on the 3rd and $4^{th}$ test, and signals from channel F3, F4, C4, F7, and F8 showed statistically significance. These five channels are surrounding the brain's Broca area, and from a brain mapping analysis it was found that F8, right-half of the brain area, was activated relative to the degree of difficulty. Lastly, cross relation analysis showed greater increasing in synchronization at test3 and $4^{th}$ at test1 and 2. From these findings, it is possible to measure brain cognitive load level and cognitive over load via brain activity, which may provide atimely feedback scheme for e-learning systems.

  • PDF

Effect of Gamma Irradiation for Hygienic Long-Term Storage on Biological Activity of Teucrium veronicoides (위생적인 장기 보존을 위한 감마선 조사가 곽향(Teucrium veronicoides)의 생리활성에 미치는 영향)

  • Park, Hye-Jin;Park, Ki-Tae;Cho, Young-Je
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제46권5호
    • /
    • pp.581-591
    • /
    • 2017
  • The purpose of this study was to examine the biological activities of gamma-irradiated Teucrium veronicoides. In photostimulated luminescence analysis, non-irradiated sample showed lower than 700 photon counts (PCs), whereas irradiated (5 and 10 kGy) samples showed higher than 700 PCs. The thermoluminescence ratio of non-irradiated samples was less than 0.1, whereas the values of irradiated samples were greater than 0.1. Electron spin resonance analysis was performed confirmed for irradiation identification. The total phenolic contents of hot-water and 50% ethanol extracts were higher than those values after irradiation at 10 kGy. Regarding 1,1-diphenyl-2-picrylhydrazyl radical inhibitory activity, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity, antioxidant protection factor, thiobarbituric acid reactive substance inhibitory activity as antioxidant test and xanthine oxidase inhibitory activity, the effect of gamma irradiation had on significant effects. On the other hand, ${\alpha}-amylase$ inhibitory activity of 10 kGy-irradiated hot-water extract was 23.6% higher than that of the non-irradiated sample. Thus, gamma irradiation could be used for the long-term storage of Teucrium veronicoides.

Initial Evaluation using Geochemical Data to infer Tectonic Setting of Mt. Baekdu/Changbaishan Volcano (백두산 화산의 지체구조 추론을 위한 지구화학적 데이터를 이용한 기초 평가)

  • Yun, Sung-Hyo;Chang, Cheolwoo;Pan, Bo
    • Journal of the Korean earth science society
    • /
    • 제43권1호
    • /
    • pp.128-139
    • /
    • 2022
  • This study aimed to investigate the tectonic setting of the volcanic edifice at Mt. Baekdu by analyzing petrochemical characteristics of Holocene felsic volcanic rocks distributed in the Baekdusan stratovolcano edifice and summit of the Cheonji caldera rim, as well as Pleistocene mafic rocks of the Gaema lava plateau and Changbaishan shield volcano edifice. During the early eruption phases, mafic eruption materials, with composition ranging from alkali basalt to trachybasalt, or from subalkaline (tholeiitic) basalt to basaltic andesite formed the Gaema lava plateau and Changbaishan shield volcanic edifice, whereas the Baekdusan stratovolcano edifice and Holocene tephra deposits near the summit of the Cheonji caldera comprises trachytic and rhyolitic compositions. Analysis results revealed bimodal compositions with a lack of 54-62 SiO2, between the felsic and mafic volcanic rocks. This suggested that magmatic processes occurred at the locations of extensional tectonic settings in the crust. Mafic volcanic rocks were plotted in the field of within-plate volcanic zones or between within-plate alkaline and tholeiite zones on the tectonic discrimination diagram, and it was in good agreement with the results of the TAS diagram. Felsic volcanic rocks were plotted in the field of within-plate granite tectonic settings on discrimination diagrams of granitic rocks. None of the results were plotted in the field of arc islands or continental margin arcs. The primitive mantle-normalized spider diagram did not show negative (-) anomalies of Nb and Ti, which are distinctive characteristics of subduction-related volcanic rocks, but exhibited similar patterns of ocean island basalt. Trace element compositions showed no evidence of, magmatic processes related to subduction zones, indicating that the magmatic processes forming the Baekdusan volcanic field occurred in an intraplate environment. The distribution of shallow earthquakes in this region supports the results. The volcanic rocks of the Baekdusan volcanic field are interpreted as the result of intraplate volcanism originating from the upwelling of mantle material during the Cenozoic era.