• Title/Summary/Keyword: 패턴손상

Search Result 216, Processing Time 0.027 seconds

Structural Joint Damage Assessment Using Neural Networks (신경망을 이용한 구조물 접합부의 손상도 추정)

  • 방은영;이진학;윤정방
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.35-46
    • /
    • 1998
  • Structural damage is used to be modeled through reductions in the stiffness of structural elements for the purpose of damage estimation of structural system. In this study, the concept of joint damage is employed for more realistic damage assessment of a steel structure. The joint damage is estimated damage based on the mode shape informations using neural networks, The beam-to-column connection in a steel frame structure is represented by a rotational spring at the fixed end of a beam element. The severity of joint damage is defined as the reduction ratio of the connection stiffness with respect to the value of the intact joint. The concept of the substructural identification is used for the localized damage assessment in a large structure. The feasibility of the proposed method is examined using an example with simulated data. It has been found that the joint damages can be reasonably estimated for the case with the measurements of the mode vectors subjected to noise.

  • PDF

Development of Diagnosis Application for Rail Surface Damage using Image Analysis Techniques (이미지 분석기법을 이용한 레일표면손상 진단애플리케이션 개발)

  • Jung-Youl Choi;Dae-Hui Ahn;Tae-Jun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.511-516
    • /
    • 2024
  • The recently enacted detailed guidelines on the performance evaluation of track facilities presented the necessary requirements regarding the evaluation procedures and implementation methods of track performance evaluation. However, the grade of rail surface damage is determined by external inspection (visual inspection), and there is no choice but to rely only on qualitative evaluation based on the subjective judgment of the inspector. Therefore, in this study, we attempted to develop a diagnostic application that can diagnose rail internal defects using rail surface damage. In the field investigation, rail surface damage was investigated and patterns were analyzed. Additionally, in the indoor test, SEM testing was used to construct image data of rail internal damage, and crack length, depth, and angle were quantified. In this study, a deep learning model (Fast R-CNN) using image data constructed from field surveys and indoor tests was applied to the application. A rail surface damage diagnosis application (App) using a deep learning model that can be used on smart devices was developed. We developed a smart diagnosis system for rail surface damage that can be used in future track diagnosis and performance evaluation work.

타이어 소음발생기구에 대한 고찰

  • 은희준
    • Journal of KSNVE
    • /
    • v.4 no.4
    • /
    • pp.397-403
    • /
    • 1994
  • 본 고에서 제시한 타이어 소음발생기구에 대한 수학적 모델은 실제활용을 목적으로 정립된 것이다. 이 모델은 프로그램화 되어 타이어 패턴 소음 예측을 위한 컴퓨터 시뮬레이션에 활용되었다. 시뮬레이션에서는 전체 소음도 뿐만아니라 스펙 트럼 특성까지도 예측할 수 있으며, 몇가지 실추결과와 비교하여 만족스러운 수준 의 일치를 확인하였다. 이 기술의 장점은 저소음 타이어 개발에 따르는 시간과 돈을 크게 절약할 수 있다는 것이다. 즉 타이어 설계자가 구상하고 있는 패턴을 컴퓨터에 입력함으로서 타이어의 기본기능을 손상하지 않는 범위에서 최선의 소음특성을 갖는 패턴을 결정할 수 있다. 선진 타이어 업체들은 이미 이같은 방법을 사용하고 있는 것으로 알려져 있으며, 이제 우리도 그 수준에 도달했다고 자부할 수 있다. 그러나 모든 과학기술 이론이 그러하듯이 이 글에서 제시한 모델 역시 결코 완벽하다고 볼 수는 없다. 이 글의 내용이 국내 관심있는 학자들에게 시작할 수 있는 계기가 될 것을 기대하며, 국산 자동차의 저소음화 노력이 더욱 활성화 되기를 희망한다.

  • PDF

Damage Count Method Using Acceleration Response for Vibration Test Over Multi-spectral Loading Pattern (복합 스펙트럼 패턴의 진동 시험을 위한 가속도 응답 데이터 기반의 피로 손상도 계산 방법)

  • Kim, Chan-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.739-746
    • /
    • 2015
  • Several damage counting methods can be applied for the fatigue issues of a ground vehicle system using strain data and acceleration data is partially used for a high cyclic loading case. For a vibration test, acceleration data is, however, more useful than strain one owing to the good nature of signal-to-random ratio at acceleration response. The test severity can be judged by the fatigue damage and the pseudo-damage from the acceleration response stated in ISO-16750-3 is one of sound solutions for the vibration test. The comparison of fatigue damages, derived from both acceleration and strain, are analyzed in this study to determine the best choice of fatigue damage over multi-spectral input pattern. Uniaxial excitation test was conducted for a notched simple specimen and response data, both acceleration and strain, are used for the comparison of fatigue damages.

Line Segment Detection Algorithm Using Improved PPHT (개선된 PPHT를 이용한 선분 인식 알고리즘)

  • Lee, Chanho;Moon, Ji-hyun;Nguyen, Duy Phuong
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.82-88
    • /
    • 2016
  • The detection rate of Progressive Probability Hough Transform(PPHT) is decreased when a lot of noise components exist due to an unclear or complex original image although it is quite a good algorithm that detects line segments accurately. In order to solve the problem, we propose an improved line detecting algorithm which is robust to noise components and recovers slightly damaged edges. The proposed algorithm is based on PPHT and traces a line segments by pixel and checks of it is straight. It increases the detection rate by reducing the effect of noise components and by recovering edge patterns within a limited pixel size. The proposed algorithm is applied to a lane detection method and the false positive detection rate is decreased by 30% and the line detection rate is increased by 15%.

Tunnel Stability Assessment Considering Rock Damage from Blasting Near to Excavation Line (굴착선 주변공 발파의 암반손상을 고려한 터널 안정성 검토)

  • 이인모;윤현진;이형주;이상돈;박봉기
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.167-178
    • /
    • 2003
  • Damage and overbreak of the remaining rock induced by blasting can not be avoided during tunnel construction which may result in either short-term or long-term tunnel instability. Therefore, in this paper, a methodology to take into account the effect of blast-induced damage in tunnel stability assessment is proposed. Dynamic numerical analysis was executed to evaluate damage and overbreak of the remaining rock for the most common blasting pattern in road tunnel. Rock damage was quantified by utilizing the damage variable factor which is adopted proposed in continuum damage mechanics. The damaged rock stiffness and the damaged failure criteria are used to consider the effect of rock damage in tunnel stability analysis. The damaged geological strength index of the damaged rock was newly proposed from the relationship between deformation modulus and geological strength index. Also the Hoek-Brown failure criteria of the damaged rock was obtained using the damaged geological strength index. Analysing the tunnel stability with the consideration of the blast-induced damage of remaining rock, it was found that the extend of plastic zone and deformation increased compared to the undamaged rock. Therefore the short-term or long-term tunnel stability will be threatened when the rock damage from blasting is ignored in the tunnel stability analysis.

Quantitative Evaluation of Delamination Inside of Composite Materials by ESPI (ESPI를 이용한 복합재료 박리결함의 정량평가)

  • Kim, Koung-Suk;Yang, Kwang-Young;Kang, Ki-Soo;Ji, Chang-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.246-252
    • /
    • 2004
  • Electronic speckle pattern interferometry (ESPI) for quantitative evaluation of delaminations inside of a composite material plate is described. Delaminations caused by the impact on composite materials are difficult to detect visual inspection and ultrasonic testing due to non-homeogenous structure. This paper proposes the quantitative evaluation technique of the defects made in the composite plates by impact load. Artificial defects are introduced inside of the composite plate for the development of a reliable ESPI inspection technique. Real defects produced by impact tester are inspected and compared with the results of visual inspection which shows a good agreement within 5% error.

ANN-Based Real-Time Damage Detection Technique Using Acceleration Signals in Beam-Type Structures (보 구조물의 가속도 신호를 이용한 인공신경망 기반 실시간 손상검색기법)

  • Park, Jae-Hyung;Lee, Yong-Hwan;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.229-237
    • /
    • 2007
  • In this study, an artificial neural network (ANN)-based damage detection algorithm using acceleration signals is developed for real-time alarming locations of damage in beam-type structures. A new ANN-algorithm using output-only acceleration responses is designed tot damage detection in real time. The cross-covariance of two acceleration-signals measured at two different locations is selected as the feature representing the structural condition. Neural networks are trained lot potential loading Patterns and damage scenarios of the target structure for which its actual loadings are unknown. The feasibility and practicality of the proposed method are evaluated from laboratory-model tests on free-free beams for which accelerations were measured before and after several damage cases.