최근 인공지능 주차관제시스템은 딥러닝을 활용해 차량 번호판에 대한 인식률을 높이고 있지만 위조번호판 부착 차량을 판별하지 못한다는 문제점이 있다. 이러한 보안상의 문제점이 있음에도 불구하고 현재까지 여러 기관에서 기존의 시스템을 그대로 사용하고 있는 상황이다. 실례로 위조번호판을 이용한 실험에서 정부의 주요 기관을 대상으로 진입에 성공한 사례도 있다. 본 논문에서는 이러한 위조번호판을 부착한 차량의 출입을 방지하기 위해서 기존 인공지능 주차관제시스템의 개선 방안을 제시한다. 이를 위해 제안하는 방법은 기존 시스템이 차량의 번호판의 일치여부를 통과기준으로 사용하듯이 이미지에서 특징이 되는 특징점의 정보를 추출해내는 ORB 알고리즘을 활용하여 추출한 차량 앞면 특징점들의 매칭 정도를 통과기준으로 사용하는 방법이다. 또한 내부에 차량이 존재하는지 여부를 확인하는 절차를 제안 시스템에 포함시켜 위조번호판을 부착한 동일 차종 차량의 진입도 방지하였다. 실험 결과, 위조번호판을 부착한 차량들의 진입을 막아내며 기존시스템에 비해 위조번호판을 막아내는 개선된 성능을 보였다. 이러한 결과를 통해 기존 인공지능 주차관제시스템의 체계를 유지하면서 본 논문에서 제안하는 방법들을 기존의 주차관제시스템에 적용하여 위조번호판을 부착한 차량의 출입을 방지할 수 있음을 확인할 수 있었다.
정보통신기술의 발전으로 인해 누구나 쉽게 정보를 생산, 유포할 수 있게 되면서, 이를 악용하여 의도적으로 유포하는 거짓 정보인 가짜뉴스가 새로운 문제로 대두되기 시작하였다. 초기에 텍스트 방식으로 주로 전파되던 가짜뉴스는 점차 진화하여 이제는 멀티미디어 형식으로 퍼지고 있다. 유튜브는 2005년에 설립된 이후 세계 최고의 동영상 플랫폼으로 성장하면서 전 세계 사람들이 대부분 이용하고 있다. 하지만 유튜브는 가짜뉴스가 퍼지는 주요 창구가 되며 사회적인 문제를 일으키고 있다. 유튜브의 가짜뉴스를 탐지하기 위하여 다양한 학자들이 연구를 진행해 왔다. 가짜뉴스 탐지 연구에는 콘텐츠 기반의 접근과 배경정보 기반의 접근이 존재하는데 기존 가짜뉴스 연구와 유튜브의 가짜뉴스 탐지 연구를 살펴보면 콘텐츠 기반의 접근이 다수를 차지하고 있다. 본 연구에서는 콘텐츠 기반의 가짜뉴스 탐지가 아닌 배경정보 기반의 가짜뉴스 탐지기법을 제안하는데, 그 중에서도 유튜브에서 제공하는 관련 동영상 정보를 활용하여 가짜뉴스를 탐지하는 방법을 제안하고자 한다. 구체적으로 관련 동영상에서 얻은 정보와 원본 동영상에서 얻은 정보를 임베딩 기술인 Doc2vec을 이용하여 벡터화 한 후, 딥러닝 네트워크인 합성곱 신경망(CNN)을 통하여 가짜뉴스를 판별하고자 하였다. 실증분석 결과 제안 기법은 기존의 콘텐츠 기반으로 유튜브 가짜뉴스를 탐지하는 접근에 비해 보다 우수한 예측 성능을 보임을 확인하였다. 이러한 본 연구의 제안 기법은 파급력이 높은 유튜브 상에서 유포되는 가짜뉴스의 전파를 사전에 예방함으로써, 우리사회를 보다 안전하고 신뢰할 수 있도록 만드는데 기여할 수 있을 것으로 기대한다.
인터넷 불법금융광고는 인터넷 카페, 블로그 등을 통해 통장매매, 신용카드·휴대폰결제현금화 및 개인신용정보매매 등 불법금융행위를 목적으로 한다. 금융감독당국의 노력에도 불구하고 불법금융행위는 줄어들지 않고 있다. 본 연구는 인터넷 불법금융광고 게시글에 파이썬 딥러닝 기반 텍스트 분류기법을 적용해 불법여부를 탐지하는 모델을 제안한다. 텍스트 분류기법으로 주로 사용되는 합성곱 신경망(CNN: Convolutional Neural Network), 순환 신경망(RNN: Recurrent Neural Network), 장단기 메모리(LSTM: Long-Short Term Memory) 및 게이트 순환 유닛(GRU: Gated Recurrent Unit)을 활용한다. 그동안 수작업으로 심사한 불법확인 결과를 기초 데이터로 이용한다. 한국어 자연어처리와 딥러닝 모델의 하이퍼파라미터 조절을 통해 최적의 성능을 보이는 모델을 완성하였다. 본 연구는 그동안 이뤄지지 않았던 인터넷 불법금융광고 판별을 위한 딥러닝 모델을 제시하였다는데 큰 의미가 있다. 또한 딥러닝 모델에서 91.3~93.4% 수준의 정확도를 보임으로써 불법금융광고 탐지에 딥러닝 모델을 실제 적용하여 불법금융광고 근절에 기여할 수 있기를 기대해 본다.
클라우드 및 빅데이터의 확산, 대규모 트래픽 폭증으로 인하여 기존 네트워크는 복잡성과 관리 효율성에 많은 문제점이 발생하였다. 이 문제를 해결하기 위해 네트워크 장비의 전송 기능과 제어 기능을 분리하여 프로그래밍을 통해 네트워크 장비를 제어 할 수 있는 소프트웨어 정의 네트워킹(SDN) 환경이 제시되었다. 이에 따라 SDN에 기존 레거시 장비들을 연결하는 방법, 효율적인 데이터 통신을 위한 패킷 관리 방법, 중앙 집중화된 구조에서의 컨트롤러 부하를 분산하는 방법 등 SDN 컨트롤러의 성능을 향상시키기 위한 연구들이 많이 진행되고 있다. 그러나 네트워크를 이용하는 애플리케이션 품질 관점에서 SDN을 제어하는 연구는 부족한 실정이다. 즉, 네트워크 서비스 품질을 만족하는 라우팅 경로 구축, 변경 등을 지원하기 위해 애플리케이션 네트워크 서비스 품질에 대한 계약을 기반으로 네트워크의 요구사항을 파악하고 현재 네트워크 상태 정보를 수집하여 네트워크 서비스 품질 위반 상황을 식별하는 메커니즘이 필요하다. 본 논문은 SDN 환경에서 애플리케이션의 네트워크 서비스 품질을 보장하며 원활한 서비스 제공을 위해 온톨로지를 사용하여 네트워크 경로의 품질 위반상황을 판별하는 방법을 제시한다.
2019년 12월부터 현재까지 지속되고 있는 코로나19 팬데믹으로 인해 대중들은 감염병 대응을 위한 정보를 필요로 하게 되었다. 하지만 소셜미디어에서 유포되는 코로나19 관련 가짜뉴스로 인해 대중들의 건강이 심각하게 위협받고 있다. 특히 코로나19와 관련된 가짜뉴스가 유사한 내용으로 대량 유포될 경우 사실인지 거짓인지 진위를 가리기 위한 검증에 소요되는 시간이 길어지게 되어 우리 사회의 전반에 심각한 위협이 될 수 있다. 이에 학계에서는 신속하게 코로나19 관련 가짜뉴스를 탐지할 수 있는 지능형 모델에 대한 연구를 활발하게 수행해 오고 있으나, 대부분의 기존 연구에 사용된 데이터는 영문으로 구성되어 있어 한국어 가짜뉴스 탐지에 대한 연구는 매우 드문 실정이다. 이에 본 연구에서는 소셜 미디어 상에서 유포되는 한국어로 작성된 코로나19 관련 가짜뉴스 데이터를 직접 수집하고, 이를 기반으로 한 지능형 가짜뉴스 탐지 모델을 제안한다. 본 연구의 제안모델은 언어학적 특성 중 하나인 품사별 빈도 정보를 추가적으로 활용하여, 기존 연구에서 주로 사용되어 온 문서 임베딩 기법인 Doc2Vec 기반 가짜뉴스 탐지 모델의 예측 성능을 제고하고자 하였다. 실증분석 결과, 제안 모델이 비교 모델에 비해 Recall 및 F1 점수가 높아져 코로나19 관련 한국어 가짜뉴스를 보다 정확하게 판별함을 확인하였다.
본 논문에서는 소형 크기인 SiPM Sensor를 휴대용 검출기 내부에 적용하여 환자 피폭을 최소화하면서도 최적의 이미지 획득을 위한 선량을 제어하기 위한 방법을 제시하고 이에 대한 성능을 평가하는 것을 목적으로 한다. 휴대용 검출기는 환자의 위치에 빠르게 접근하여 신속한 진단을 가능하게 하는 장점이 있지만 이러한 이동성은 선량 관리의 어려움을 동반한다. X-ray imaging devices 국제 표준인 IEC62220-1-1 기준의 이미지 평가를 통해 검출기의 DQE와 최적 화질을 갖을 수 있는 선량을 확인하고 영상의 ADU와 SiPM Sensor의 출력을 매칭 하여 최적 선량을 확인하는 방법을 제시하였다. 검출기 제조사 기준 선량과 최적 선량 구현으로 획득된 Skull AP 이미지는 제조사 기준 342.8 µGy, 최적 제어 선량은 148.3 µGy로 조사되어 제조사 기준 선량 대비 57 %, Chest AP는 제조사 기준 81.9 µGy, 제어된 최적 선량은 27.9 µGy로 66 %의 높은 선량 감소 효과가 확인되었다. 또한 촬영된 두 영상은 방사선사 5명의 분석을 통해 해부학적 구조물을 판별하기에 임상적으로 유의미한 차이가 없는 것으로 확인되었다.
본 논문에서는 김치 제조 공정 중 배추 심 제거 공정의 로봇 자동화를 위한 배추 심 영역 및 깊이를 판별하는 딥러닝 모델을 제안하는 것이다. 또한 계측된 배추의 심 깊이를 예측하는 것이 아닌 discrete 클래스로 변환하여 영역 검출 및 분류를 동시에 하는 모델을 제시하였다. 딥러닝 모델 학습 및 검증을 위하여 전처리 과정을 거지치 않고 수확된 배추 522 포기에 대한 RGB 영상을 획득하였다. 획득한 영상으로부터 심 영역 및 깊이 라벨링 그리고 데이터 증강 기법을 적용하였다. 제안하는 YOLO-v4 딥러닝 모델 기반 배추 심 영역 검출 및 분류 모델의 성능을 평가하기 위하여 mAP, IoU, accuracy, sensitivity, specificity 그리고 F1-score로 선정하였다. 그 결과 배추 심 영역 검출은 mAP 그리고 IoU 값이 각각 0.97 그리고 0.91로 나타났으며, 심 깊이 분류의 경우 accuracy 그리고 F1-score 값이 각각 96.2% 그리고 95.5%로 나타났다. 본 연구 결과를 통하여 배추의 심 영역 검출 및 깊이 정보 분류가 가능하며, 추후 배추 심 제거 공정의 로봇-자동화 시스템 개발에 활용될 수 있는 가능성을 확인하였다.
선박 프로펠러 캐비테이션 소음이 발생하면 수중 방사 소음의 수준이 급격히 상승하는데, 특히 함정의 경우에 피탐지 확률이 증가해 치명적인 위협 요인이 될 수 있다. 따라서 함정의 생존성 향상을 위하여 캐비테이션 신호를 정확하고 신속하게 판단하는 것이 매우 중요한데, 종래에는 센서로 계측한 음압/진동 준위가 기준값 이상이면 캐비테이션 발생으로 판단하는 기술과 데몬 기법을 통해 캐비테이션 발생 여부를 판별하는 방법이 주로 수행되었다. 그러나 이와 관련된 기술은 캐비테이션의 발생 현상에 대한 물리적 이해와 사용자의 주관적 기준을 기반으로 수행되며 여러 절차를 거치기 때문에 캐비테이션 신호를 조기에 자동으로 인식하는 기법의 개발이 필요하다. 본 논문에서는 선체에 부착된 음향 센서를 이용하여 계측된 음향 신호로부터 캐비테이션 신호의 특징을 반영한 간단한 통계량 기반 특징을 추출하고 이로부터 캐비테이션 발생 여부를 자동으로 판단하는 알고리즘을 제안한다. 제안된 기법의 성능은 센서 수와 모형 시험 조건에 따라 평가하는데, 단일 센서로 계측된 신호에 캐비테이션의 특징을 충분히 반영하여 훈련하면 캐비테이션 신호의 발생 여부를 판단 가능함을 확인했다.
오래 전부터 학계에서는 정확한 주식 시장의 예측에 대한 많은 연구가 진행되어 왔고 현재에도 다양한 기법을 응용한 예측모형들이 연구되고 있다. 특히 최근에는 딥러닝(Deep-Learning)을 포함한 다양한 기계학습기법(Machine Learning Methods)을 이용해 주가지수를 예측하려는 많은 시도들이 진행되고 있다. 전통적인 주식투자거래의 분석기법으로는 기본적 분석과 기술적 분석방법이 사용되지만 보다 단기적인 거래예측이나 통계학적, 수리적 기법을 응용하기에는 기술적 분석 방법이 보다 유용한 측면이 있다. 이러한 기술적 지표들을 이용하여 진행된 대부분의 연구는 미래시장의 (보통은 다음 거래일) 주가 등락을 이진분류-상승 또는 하락-하여 주가를 예측하는 모형을 연구한 것이다. 하지만 이러한 이진분류로는 추세를 예측하여 매매시그널을 파악하거나, 포트폴리오 리밸런싱(Portfolio Rebalancing)의 신호로 삼기에는 적합치 않은 측면이 많은 것 또한 사실이다. 이에 본 연구에서는 기존의 주가지수 예측방법인 이진 분류 (binary classification) 방법에서 주가지수 추세를 (상승추세, 박스권, 하락추세) 다분류 (multiple classification) 체계로 확장하여 주가지수 추세를 예측하고자 한다. 이러한 다 분류 문제 해결을 위해 기존에 사용하던 통계적 방법인 다항로지스틱 회귀분석(Multinomial Logistic Regression Analysis, MLOGIT)이나 다중판별분석(Multiple Discriminant Analysis, MDA) 또는 인공신경망(Artificial Neural Networks, ANN)과 같은 기법보다는 예측성과의 우수성이 입증된 다분류 Support Vector Machines(Multiclass SVM, MSVM)을 사용하고, 이 모델의 성능을 향상시키기 위한 래퍼(wrapper)로서 유전자 알고리즘(Genetic Algorithm)을 이용한 최적화 모델을 제안한다. 특히 GA-MSVM으로 명명된 본 연구의 제안 모형에서는 MSVM의 커널함수 매개변수, 그리고 최적의 입력변수 선택(feature selection) 뿐만이 아니라 학습사례 선택(instance selection)까지 최적화하여 모델의 성능을 극대화 하도록 설계하였다. 제안 모형의 성능을 검증하기 위해 국내주식시장의 실제 데이터를 적용해본 결과 ANN이나 CBR, MLOGIT, MDA와 같은 기존 데이터마이닝 기법들이나 인공지능 알고리즘은 물론 현재까지 가장 우수한 예측 성과를 나타내는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안 모형이 보다 우수한 예측성과를 보임을 확인할 수 있었다. 특히 주가지수 추세 예측에 있어서 학습사례의 선택이 매우 중요한 역할을 하는 것으로 확인 되었으며, 모델의 성능의 개선효과에 다른 요인보다 중요한 요소임을 확인할 수 있었다.
음악요약이란 주어진 음악 컨텐츠에서 가장 중요하고 특징적인 한 부분이나 여러 부분들을 제공하는 것을 말한다. 음악요약 기술에는 크게 두 가지 종류의 음악요약을 위한 기술들이 연구되고 있다. 음악 컨텐츠 내에서 반복되는 구간을 음악요약으로 제공하는 기술과 특정이 다른 부분들의 일정구간을 모두 제공하는 기술이 있다. 본 논문에서는 두 가지 종류의 음악요약을 제공하는 알고리즘들을 제안하고 평가하였다. 반복되는 구간을 음악요약으로 제공하는 다중 레벨 벡터양자화를 이용한 알고리즘은 고정된 길이와 최적의 길이를 가지는 음악요약을 제공하는 알고리즘들을 객관적인 방법으로 성능을 평가하였고, 음악 내에서 특정이 다른 부분들을 일정부분씩 취합하여 제공하는 2-D 유사도 행렬과 k-mean 알고리즘을 이용하는 집단화 방법을 이용한 방법의 평가는 주관적인 평가인 MOS 테스트로 평가하였다. 다중 레벨 벡터양자화를 이용한 음악요약을 제공하는 알고리즘에서 고정된 길이의 음악요약을 제공하는 알고리즘은 사람이 직접 요약한 결과와 제안한 방법으로 구한 요약과의 중첩도 (Overlapping Ratio)를 이용한 결과 기존의 방법들이 42.2% 와 47.3% 임에 비해 제안된 방법은 67.1%로 높은 성능을 보여주었고, 최적의 길이를 가지는 음악요약을 제공하는 알고리즘은 음악에 따라 다른 길이를 가지는 반복되는 부분의 포함 정도를 나타내는 최적 중첩비율 (Optimal Overlapping Ratio) 을 측정한 결과 고정된 길이를 가지는 음악요약 보다 최적의 길이로 음악마다 다른 길이 의 반복되는 부분을 효과적으로 표현함을 알 수 있었다. 집단화 방법을 이용한 알고리즘은 두 가지 질문들 (제공된 세그먼트들 중 특정이 비슷한 것의 개수, 제공된 세그먼트들 중 같은 구조에 속하는 것의 개수)을 이용한 MOS 테스트에서 우수한 결과를 보여주었다. 환자에서 완전관해를 보였고, 원격전이와 국소재발이 각각 2명과 1명에서 관찰되었다. 결론: SMART를 사용한 IMRT를 도입하여 임상적으로나 선량측정상 이하선의 기능 보존이 가능하였으며, 또한 생물학적으로 더욱 효과적일 것으로 생각되었다 향후 정확한 종양억제 효과와 만기 독성을 알기 위해서는 추가적인 연구대상과 추적관찰이 필요하다고 생각한다.ty modulated radiation therapy, IMRT)를 이용한 최근의 결과와 비교하여 CK를 이용한 정위 방사선 치료는 생존율 측면에서 비슷하거나 나은 결과를 보였다. 또한 심각한 부작용은 관찰되지 않았으며 짧은 기간의 치료로 환자에게 편의를 제공할 수 있어 결과적으로 삶의 질을 향상시킬 수 있을 것이다. 따라서, 이 새로운 치료 방법은 국소 진행된, 절제 불가능한 췌장암 환자에서 심각한 부작용 없는 효과적인 치료가 될 것으로 생각된다. 또한 계획용 표적 체적은 CK 치료의 유용한 예후 인자로 사용될 것이다.인위적 활동에 의한 부분이 높은 것으로 추정되었다.가>에는 이 시교의 외면적인 따스함과 내면적인 정(情)과 성(性)의 부드러움이 적고. 그 반대로 풍간하여 지절사정(指切事情)함이 강하였던 모양이다. 풍간하여 사정(事情)을 매몰차게 지적하여 논평하였음을 퇴계는 '완세불공(玩迷不恭)'이라고 판단했을 것이다. 장육당은 청(淸)과 탁(濁)이 있음을 알지 못하고. 그것의 분별도 하지 못하는 세상 사람들을 완농(玩弄)하였다. 그러므로 그는 진환(塵 )에서 초연(超然)했던 것이다. 천석고황(泉石膏 )으로 태평성대(太平聖代)에 사시가흥(四時佳興)을 한가지로 하는 퇴계와는 그래서 다르다. 퇴계는 순풍(淳風)과 어진 인성(人性)을 긍정하였기에 만족하고. '고인(古人)의 녀던 길'을 끊임없이 행(行)하고자 하였다. 여기에서 '완세불공(玩世不恭)'과 '온유돈후(溫柔敦厚)'가 판별되어진다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.