본 연구는 한국의 벤처캐피탈회사들이 투자안이 투자여부를 판단하는데 사용하는 평가모형이 실제의 성과와 비교하여 타당성을 갖는가를 분석하였다. 이를 위해 본 연구는 다음의 두가지 투자모형을 도출하여 그 내용을 비교하였다. 실제심사모형(Current Evaluation Model)은 심사과정을 거친 168개 투자안을 coxorehlse 그룹과 기각된 그룹으로 분류하여 이에 대한 판별분석을 통해 투자여부에 영향을 미친 평가요인의 우선순위를 규명하여 도출하였다. 한편, 성과모형(Performance-based model)은 앞 모형에서 채택된 투자안을 다시 성공과 실패의 두 그룹으로 분류하고 이를 종속변수로 한 판별분석을 통해 성과에 대한 평가요인의 영향도를 파악하여 개발하였다. 이 두 모형을 비교함으로써 본 연구는 우리나라 벤쳐캐피탈이 적용하는 투자평가시스템의 문제점을 파악하고 그 원인을 고찰하였다. 본 연구는 미국 등 선진국과 달리 다양한 투자환경에서 나타날 수 있는 투자평가모형의 타당성을 검증할 수 있는 접근방법을 제시했다는 점에 큰 의의가 있다. 이러한 접근을 통해 현 평가 모형의 문제점을 파악하고 개선방법을 제시할 수 있을 것이다.
본 논문에서는 통계적 분류방법을 이용하여 문화재 자료의 분석을 수행하였다. 분류방법으로는 선형판별분석, 로지스틱회귀분석, 의사결정나무분석, 신경망분석, SVM분석을 사용하였다. 각각의 분류방법에 대한 개념 및 이론에 대해 간략히 소개하고, 실제자료 분석에서는 "지역별 문화재 통계분석 및 모형개발 연구 1차(2008)"에 사용된 자료 중 익산시 자료를 근거로 매장문화재에 대한 분류방법별 적합모형을 구축하였다. 구축된 모형과 모의실험의 결과를 통해 각각의 적합모형에 대한 비교를 수행하여 모형의 성능을 비교하였다. 분석에 사용된 도구로는 최근 가장 관심을 갖는 R-project를 사용하였다.
본 연구에서는 보다 효과적인 기업부도예측을 위하여, 동계적 방법과 인공지능 방법을 결합한 통합모형을 제시하였다. 이를 위하여 통계적인 모형 중에서 가장 널리 활용되고 있는 다변량 판별분석, 로지스틱 회귀분석과 인공 지능적인 방법으로서 최근 널리 사용되고 있는 인공신경망, 규칙유도기법, 베이지안 망의 5가지 방법론을 통합한 Voting with Performance & Weights from ANN(WP-ANN) 통합모형을 제시하였다. 실험결과, 본 연구에서 제안한 WP-ANN 통합모형은 다변량 판별분석, 로지스탁 회귀분석, 인공신경망, 규칙유도기법, 베이지안 망 등의 단일모형과 비교한 결과 가장 예측정확성이 유수한 것으로 나타났다. 따라서 본 연구를 통해 기업부도예측에 있어서 WP-ANN 통합모형이 기존의 모형들에 비해 우수한 예측정확성을 나타냄을 알 수 있었다.
EEG 생리신호의 분석은 국내에서도 최근에 활발하게 연구가 진행되고 있으나, 시계열을 이용한 분석법은 통계학의 전문적인 지식을 요구하고 있기 때문에 연구에 많은 어려움이 있다. 그러므로 감성과학 연구자들이 보다 쉽게 이해하고 분석할 수 있는 Tool의 개발이 절실히 요구되고 있다. 본 논문에서는 EEG 생리신호 분석을 위한 모형분석 시스템과 생리신호 분류를 위한 판별분류 시스템을 구축하였다. 이 시스템에서는 신호분석을 위한 그래프 작성, 자극 신호에 대한 모형식별 방법의 제시, 모형에 대한 추정 및 진단 기준에 따른 최적의 모형선정 방법 등을 지원한다. 또한 선정된 모형에 이해 모수를 추정하고 이를 이용하여 통계에 대한 지식이 없이도 쉽게 각 뇌파 신호들을 판별 분류할 수 있다.
오늘날 관찰값의 개수에 비해 변수의 개수가 큰 희박한 데이터셋은 다양한 분야에서 쉽게 찾아볼 수 있고, 통계학에서 그러한 데이터셋에 대한 분석은 하나의 도전이 되어 왔다. 그러한 희박한 데이터에 대한 분류를 위해 판별분석모형들이 최근에 개발되었다. 그러한 판별분석모형들 중 하나의 접근법은 그룹들을 잘 구분해주는 차원들을 찾기를 시도하는데, 그러한 차원들은 데이터의 변수의 개수보다 훨씬 적다. 그러한 모형에서 차원의 수는 예측과 자료의 시각화를 위해 중요한 역할을 하고 일반적으로 K-묶음 교차타당성 방법에 의해 결정된다. 하지만, 희박한 데이터의 경우 K-묶음 교차타당성 방법 적용시 각 묶음에 대한 관찰값의 개수가 매우 적을 수 있기 때문에 교차타당성에 의한 차원 수 결정은 신뢰성이 떨어질 수 있다. 따라서, 본 연구에서는 그러한 희박판별분석모형에 의해 찾아진 차원들에서 각 그룹들의 평균 간의 표준화된 거리에 근거한 측도를 사용하여 최적의 차원 수를 결정하는 방법을 제안하고, 제안된 방법은 모의실험을 통해 검증된다.
본 연구에서는 부도예측용 인공신경망의 입력노드 선정을 위한 휴리스틱으로 연결강도분석 접근법을 제안한다. 연결강도분석은 학습이 끝난 인공신경망에서 입력노드와 은닉노드와 연결된 가중치의 절대값 즉, 연결강도를 분석하여 입력변수를 선정하는 접근법으로, 본 연구에서는 약체연결뉴론제거법, 강체연결뉴론선택법 그리고 이 두 기법을 통합한 통합 연결강도 모형을 제안하여 각각 의사결정 트리 및 다변량판별분석에 의해 선정된 입력변수를 이용한 인공신경망 모형과 예측율을 비교한다. 실험 결과 본 연구에서 제안하고 있는 방법론이 의사결정트리나 다다변량판별분석 기법 보다 높은 예측율을 보여 주었다. 특히 두 기법의 통합연결강도 모형의 경우에는 다른 단일 기법보다 높은 예측율을 보이고 있다.
교통부문 온실가스 저감과 도로의 경쟁력 강화를 위해 교통정보 제공을 통한 수요분산의 관심이 높아지고 있다. 그러나, 이를 위해서는 효율적이며 효과적인 정보제공전략 수립과 운전자 경로전환 행태와 영향요인들에 대한 연구가 선결적으로 필요한 바, 본 연구에서는 도로의 소통상황을 포함한 주행여건과 운전자의 정보매체 선호특성을 고려하여 경로전환 판별모형을 개발하고자 하였다. CART 분석을 이용한 집단구분에서는 주행여건에 따라 3개 군집으로 분류되었으며, 통계적으로 유의하였다. 그리고, CHAID 분석을 통해 경로전환에 영향을 미치는 주행여건과 선호매체 요인들을 통계적으로 유의한 집단으로 구분하여, 경로전환에 영향을 미치는 주요 요인을 파악하였다. 마지막으로, 판별분석을 통해 주행여건과 선호매체가 경로전환에 미치는 영향정도를 파악하고, 경로전환 예측 판별모형식을 개발하였다. 판별모형식 구축 결과, 경로전환은 주행여건에 더 많은 영향을 받는 것으로 나타났으며, 전체 판별적중률(Hit Ratio)은 64.2%로 도출되어 본 판별식은 일정수준 이상의 높은 판별력을 가지고 있었다.
본 연구는 금융기관에서의 고객신용평가를 위한 최적의 데이터마이닝 모형을 제안한다. 이를 위해 할부금융시장에서의 고객정보 및 할부진행 과정에 대한 세부 내역을 바탕으로 다계층 퍼셉트론(Multi-Layered Perceptrons:MLP)과 다변량 판별분석(Multivariate Discrimination Analysis : MDA), 그리고 의사결정나무(Decision Tree)를 적용하여 각각의 개별모형을 도출하고 이론 유전자 알고리즘을 이용하여 통합한 최종 모형을 구해 그 결과론 각 단일모형과 비교${\cdot}$분석하였다. 그 견과 유전자 알고리즘을 통해 결합한 통합모형의 성능이 가장 우수한 것으로 나타났다. 이에 본 연구는 기존에 진행되었던 개변모형에 대한 검증은 물론, 단순히 여러 개의 모형을 비교${\cdot}$분석하여 우월한 모형을 평가하는 기존 방법론 상의 한계를 극복하기 위해 각각의 개별모형을 유전자 알고리즘을 통해 통합모형으로 구축하는 하나의 방법론을 제시하였다는데 그 의의가 있다.
기존에 제안되어온 판별분석 기법이 대상으로 하는 대부분의 자료는 각 개체가 어느 한 특정한 집단에 전적으로 소속되어 있는 것으로 국한되어 왔다. 그러나 오늘날 (0-1)의 이치논리가 퍼지(Fuzzy) 개념과 다치논리로 확장되는 현상은 어느 한 개체를 꼭 한개의 집단에만 국한시키는 관점 역시 변화를 요구하고 있다고 본다. 이에 본 논문에서는 한 개체가 어떤 소속확률을 갖고 여러개의 집단에 소속되어 있는 상황을 고려하여 이러한 개체들로 구성된 학습표본으로부터 판별분석 규칙을 개발하는 것을 목표로 하였다. 방법론으로는 개체들의 특성벡터와 소속상태의 관계를 역추정(calibration) 모형으로 표현하고 판별대상개체의 특성벡터가 주어졌을 때 소속상태를 추정하도록 하며 이때 추정은 베이지안 방법, Metropolis 알고리즘 등을 사용하였다. 또한 제안된 판별규칙의 평가를 위한 기준을 제안하고 두개의 자료를 기존의 다른 규칙들과 함께 분석하여 결과를 비교하였다.
한국지능정보시스템학회 2000년도 춘계정기학술대회 e-Business를 위한 지능형 정보기술 / 한국지능정보시스템학회
/
pp.251-258
/
2000
인공신경망에 의해 부도예측을 하기 위해서는 여러 개의 재무비율을 입력변수 즉, 입력노드로 이용하는데, 이 가운데 적절한 입력노드를 선정하는 일은 예측력을 결정하는데 있어서 매우 중요하다. 본 연구에서는 새로운 입력노드 선정 휴리스틱을 제안하기 위하여 적절한 훈련이 끝난 인공신경망 모델에서 각 입력노드와 연결되는 가중치들의 합에 대한 절대값인 연결강도가 작은 경우 해당 노드는 출력값에 대한 설명력이 약할 것이다라는 연결강도판별 명제를 제시한다. 즉, 연결강도가 연결강도임계치보다 작은 입력노드는 제거 대상으로 분류할 수 있을 것이고, 이들 노드를 제외한 입력노드는 그렇지 않은 경우보다 더 나은 예측력을 보여 줄 수 있을 것이다. 연결강도판별 명제를 실증적으로 입증하기 위해 본 연구에서는 연결강도판별 선처리 과정에 대한 방법론을 제안하고 제안된 방법론에 의해 부도예측을 실시하여 아무런 선처리를 거치지 않은 모형과 비교하였고, 또 기존의 입력변수 선정방식 중에 하나인 의사결정트리 방식에 의한 입력변수 선정 모형과도 비교하여 더 나은 결과를 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.