• Title/Summary/Keyword: 판단 함수

Search Result 1,315, Processing Time 0.032 seconds

Petrology of the Syenites in Sancheong, Korea (경남 산청 지역의 섬장암에 관한 암석학적 연구)

  • Ok, Eun-Young;Kim, Jong-Sun;Lee, Sang-Won;Kang, Hee-Cheol
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.25-54
    • /
    • 2015
  • Syenite is not a common rock, unlike granitic rocks formed the major component of the continental crust. The aim of this study is to decipher the occurrences and detailed descriptive characteristics of the syenite distributed in Sancheong area, and to investigate the petrogenesis of the syenitic magma based on geochemical study. The dominant minerals in syenite are alkali feldspar (usually orthoclase and rarely microcline), plagioclase, amphibole, biotite, and quartz. Syenites are found in a wide variety of colors. The anhedral hornblende and biotite filling the boundary of feldspar and quartz indicate that the hydrous minerals were crystallized lately, and that water was insufficient at the beginning of crystallization in magma. According to the analysis of mineral composition, amphibole in syenite is mostly ferro-edenite, and the pressure is calculated as 3.3~4.9 kb with 11.9~17.3 km of emplacement depth. Biotite and pyroxene are plotted in the region of annite and hedenbergite, respectively. Based on petrochemical studies of major elements, syenite belongs to alkaline series, metaluminous, and I-type. On the other hand, the variation patterns of trace and rare earth elements of syenite differ from the patterns of diorite and granite. In the geochemical characteristics, syenite is different from gabbro-diorite spatially adjacent to syenite, as well as granite. These results suggest that each rock has been generated from the different sources of magma. Additionally, based on the experimental data, the syenitic magma can be formed (1) by the partial melting at a high pressure and dry system, (2) when the initial crystallization minerals to be residue with migration of the residual melts separated from the ascending cotectic magma (3) when fluorine compositions to be plentiful in the protolith and/or at depth of the magma. Based on the petrographic characteristics of the syenite, Sancheong syenitic magma may have been formed by partial melting in a dry system.

Characteristics of the Graded Wildlife Dose Assessment Code K-BIOTA and Its Application (단계적 야생동식물 선량평가 코드 K-BIOTA의 특성 및 적용)

  • Keum, Dong-Kwon;Jun, In;Lim, Kwang-Muk;Kim, Byeong-Ho;Choi, Yong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.252-260
    • /
    • 2015
  • This paper describes the technical background for the Korean wildlife radiation dose assessment code, K-BIOTA, and the summary of its application. The K-BIOTA applies the graded approaches of 3 levels including the screening assessment (Level 1 & 2), and the detailed assessment based on the site specific data (Level 3). The screening level assessment is a preliminary step to determine whether the detailed assessment is needed, and calculates the dose rate for the grouped organisms, rather than an individual biota. In the Level 1 assessment, the risk quotient (RQ) is calculated by comparing the actual media concentration with the environmental media concentration limit (EMCL) derived from a bench-mark screening reference dose rate. If RQ for the Level 1 assessment is less than 1, it can be determined that the ecosystem would maintain its integrity, and the assessment is terminated. If the RQ is greater than 1, the Level 2 assessment, which calculates RQ using the average value of the concentration ratio (CR) and equilibrium distribution coefficient (Kd) for the grouped organisms, is carried out for the more realistic assessment. Thus, the Level 2 assessment is less conservative than the Level 1 assessment. If RQ for the Level 2 assessment is less than 1, it can be determined that the ecosystem would maintain its integrity, and the assessment is terminated. If the RQ is greater than 1, the Level 3 assessment is performed for the detailed assessment. In the Level 3 assessment, the radiation dose for the representative organism of a site is calculated by using the site specific data of occupancy factor, CR and Kd. In addition, the K-BIOTA allows the uncertainty analysis of the dose rate on CR, Kd and environmental medium concentration among input parameters optionally in the Level 3 assessment. The four probability density functions of normal, lognormal, uniform and exponential distribution can be applied.The applicability of the code was tested through the participation of IAEA EMRAS II (Environmental Modeling for Radiation Safety) for the comparison study of environmental models comparison, and as the result, it was proved that the K-BIOTA would be very useful to assess the radiation risk of the wildlife living in the various contaminated environment.

Continuous Wet Oxidation of TCE over Supported Metal Oxide Catalysts (금속산화물 담지촉매상에서 연속 습식 TCE 분해반응)

  • Kim, Moon Hyeon;Choo, Kwang-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.206-214
    • /
    • 2005
  • Heterogeneously-catalyzed oxidation of aqueous phase trichloroethylene (TCE) over supported metal oxides has been conducted to establish an approach to eliminate ppm levels of organic compounds in water. A continuous flow reactor system was designed to effect predominant reaction parameters in determining catalytic activity of the catalysts for wet TCE decomposition as a model reaction. 5 wt.% $CoO_x/TiO_2$ catalyst exhibited a transient period in activity vs. on-stream time behavior, suggesting that the surface structure of the $CoO_x$ might be altered with on-stream hours; regardless, it is probable to be the most promising catalyst. Not only could the bare support be inactive for the wet decomposition reaction at $36^{\circ}C$, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Very low TCE conversion appeared for $TiO_2$-supported $NiO_x$ and $CrO_x$ catalysts. Wet oxidation performance of supported Cu and Fe catalysts, obtained through an incipient wetness and ion exchange technique, was dependent primarily on the kinds of the metal oxides, in addition to the acidic solid supports and the preparation routes. 5 wt.% $FeO_x/TiO_2$ catalyst gave no activity in the oxidation reaction at $36^{\circ}C$, while 1.2 wt.% Fe-MFI was active for the wet decomposition depending on time on-stream. The noticeable difference in activity of the both catalysts suggests that the Fe oxidation states involved to catalytic redox cycle during the course of reaction play a significant role in catalyzing the wet decomposition as well as in maintaining the time on-stream activity. Based on the results of different $CoO_x$ loadings and reaction temperatures for the decomposition reaction at $36^{\circ}C$ with $CoO_x/TiO_2$, the catalyst possessed an optimal $CoO_x$ amount at which higher reaction temperatures facilitated the catalytic TCE conversion. Small amounts of the active ingredient could be dissolved by acidic leaching but such a process gave no appreciable activity loss of the $CoO_x$ catalyst.

A Study on Economic Value of Daegu Arboretum based on Contingent Valuation Methods (가상가치평가법을 이용한 대구수목원의 경제적 가치평가)

  • Kang, Kee-Rae;Lee, Kee-Cheol;Lee, Hyun-Taek;Ryu, Byong-Ro;Kim, Dong-Pil
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.5
    • /
    • pp.787-798
    • /
    • 2011
  • An arboretum is defined as a collection of facilities that conserve plant species by surveying, collecting, and proliferating and preserving the plants in nature, perform diverse researches on plants and display the plants in exhibition spaces or outdoors as well as provide the public with educational programs and refreshment spaces according to the laws concerned. The public, however, recognizes the exhibition and education functions on plants of arboretum more importantly compared with the roles to survey, collect, and proliferate plants as regulated by the laws. In particular, arboretum plays a role to offer a pivotal educational place in urban area where the public can obtain an hands-on experience and understanding on a wide range of plant species and natural environment. The study aims to estimate the non market environmental values of Daegu Arboretum operated by Daegu Metropolitan City government by using the Contingent Valuation Methods (CVM), which yields the current monetary estimates for the arboretum. The value estimation was undertaken by using the Double-Bound Dichotomous Choice (DBDC) method, and each estimated value was derived from respective functions based on a logit distribution known to include relatively stable estimates according to the shape of the distribution. Considering the statistical fitness test results, the author estimated the amounts of the Willingness To Pay (WTP) such as mean WTP of 12,718 KRW, median WTP of 11,033 KRW, and truncated mean WTP of 11,468 KRW, which represented the annual recreational values per a person visiting Daegu Arboretum respectively. The analysis showed that Daegu Arboretum created the annual environmental values which were estimated to be approximately 16 to 19 billion KRW. The study also has an implication that the valuation method for the environment of Daegu Arboretum may be effectively applied for estimating the values of other types of environmental goods by altering the locations or goods to be analyzed.

Population Phenology and an Early Season Adult Emergence model of Pumpkin Fruit Fly, Bactrocera depressa (Diptera: Tephritidae) (호박과실파리 발생생태 및 계절초기 성충우화시기 예찰 모형)

  • Kang, Taek-Jun;Jeon, Heung-Yong;Kim, Hyeong-Hwan;Yang, Chang-Yeol;Kim, Dong-Soon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.158-166
    • /
    • 2008
  • The pumpkin fruit fly, Bactrocera depressa (Tephritidae: Diptera), is one of the most important pests in Cucurbitaceae plants. This study was conducted to investigate the basic ecology of B. depressa, and to develop a forecasting model for predicting the time of adult emergence in early season. In green pumpkin producing farms, the oviposition punctures caused by the oviposition of B. depressa occurred first between mid- and late July, peaked in late August, and then decreased in mid-September followed by disappearance of the symptoms in late September, during which oviposition activity of B. depressa is considered active. In full-ripened pumpkin producing farms, damaged fruits abruptly increased from early Auguest, because the decay of pumpkins caused by larval development began from that time. B. depressa produced a mean oviposition puncture of 2.2 per fruit and total 28.8-29.8 eggs per fruit. Adult emergence from overwintering pupae, which was monitored using a ground emergence trap, was first observed between mid- and late May, and peaked during late May to early June. The development times from overwintering pupae to adult emergence decreased with increasing temperature: 59.0 days at $15^{\circ}C$, 39.3 days at $20^{\circ}C$, 25.8 days at$25^{\circ}C$ and 21.4 days at $30^{\circ}C$. The pupae did not develop to adult at $35^{\circ}C$. The lower developmental threshold temperature was calculated as $6.8^{\circ}C$ by linear regression. The thermal constant was 482.3 degree-days. The non-linear model of Gaussian equation well explained the relationship between the development rate and temperature. The Weibull function provided a good fit for the distribution of development times of overwintering pupae. The predicted date of 50% adult emergence by a degree-day model showed one day deviation from the observed actual date. Also, the output estimated by rate summation model, which was consisted of the developmental model and the Weibull function, well pursued the actual pattern of cumulative frequency curve of B. depressa adult emergence. Consequently, it is expected that the present results could be used to establish the management strategy of B. depressa.

Environmental Condition for the Butt-Rot of Conifers by Cauliflower Mushroom (Sparassis crispa) and Wood Quality of Larix kaempferi Damaged by the Fungus (꽃송이버섯에 의한 침엽수 심재부후 발생환경 및 낙엽송 피해목의 재질 특성)

  • Park, Hyun;Oh, Deuk-Sil;Ka, Kang Hyeon;Ryu, Sung-Ryul;Park, Joo-Saeng;Hwang, Jaehong;Park, Jun-Mo
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.1
    • /
    • pp.16-25
    • /
    • 2009
  • Cauliflower mushroom (Sparassis crispa) is recently recognized as a new edible and/or medicinal mushroom cultivated with conifers. By the way, the mushroom is notorious as a brown-rot fungus that causes a buttrot of larch. So, there should be a careful consideration to apply the mushroom cultivation in coniferous stand. This study was conducted to clarify the seriousness of heartwood decay on conifers such as larch by cauliflower mushroom with surveying the mushroom producing environment and to examine whether the cultivation of cauliflower mushroom produce any problem in conifer stands or not. The mushroom occurred in various coniferous stands such as Larix kaempferi, Pinus koraiensis, P. densiflora and Abies holophylla on fertile soils with adequate moisture. Soil texture of the mushroom producing site was comparatively fine compared to general forest soils; sandy loam, loam and silty loam. Soil pH ranged from 4.6 to 5.2, and organic matter contents were 4~11%, which showed relatively wide range. We could find S. crispa by a DNA technique from the wood that seemed to have no heartwood decay by naked eyes. The damaged wood showed 30% higher moisture contents than that of sound wood, while the compressive strength was 30% lowered down compared to that of sound wood. The fungus may invade conifers through the scars occurred on roots or stems, in this case spore dispersion of the mushroom takes a great role. Thus, we concluded that forest tending activities need to be applied with considering the invasion of S. crispa, and cultivation of cauliflower mushroom in forest should be attempted very carefully. By the way, we also infer that conifer stands can be nurtured without heartwood decay by S. crispa if the stand be managed in good aeration conditions by proper silvicultural practices such as sanitary thinning.

Development and Evaluation of Model-based Predictive Control Algorithm for Effluent $NH_4-N$ in $A^2/O$ Process ($A^2/O$ 공정의 유출수 $NH_4-N$에 대한 모델기반 예측 제어 알고리즘 개발 및 평가)

  • Woo, Dae-Joon;Kim, Hyo-Soo;Kim, Ye-Jin;Cha, Jae-Hwan;Choi, Soo-Jung;Kim, Min-Soo;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.25-31
    • /
    • 2011
  • In this study, model-based $NH_4-N$ predictive control algorithm by using influent pattern was developed and evaluated for effective control application in $A^2/O$ process. A pilot-scale $A^2/O$process at S wastewater treatment plant in B city was selected. The behaviors of organic, nitrogen and phosphorous in the biological reactors were described by using the modified ASM3+Bio-P model. A one-dimensional double exponential function model was selected for modeling of the secondary settlers. The effluent $NH_4-N$ concentration on the next day was predicted according to model-based simulation by using influent pattern. After the objective effluent quality and simulation result were compared, the optimal operational condition which able to meet the objective effluent quality was deduced through repetitive simulation. Next the effluent $NH_4-N$ control schedule was generated by using the optimal operational condition and this control schedule on the next day was applied in pilot-scale $A^2/O$ process. DO concentration in aerobic reactor in predictive control algorithm was selected as the manipulated variable. Without control case and with control case were compared to confirm the control applicability and the study of the applied $NH_4-N$control schedule in summer and winter was performed to confirm the seasonal effect. In this result, the effluent $NH_4-N$concentration without control case was exceeded the objective effluent quality. However the effluent $NH_4-N$ concentration with control case was not exceeded the objective effluent quality both summer and winter season. As compared in case of without predictive control algorithm, in case of application of predictive control algorithm, the RPM of air blower was increased about 9.1%, however the effluent $NH_4-N$ concentration was decreased about 45.2%. Therefore it was concluded that the developed predictive control algorithm to the effluent $NH_4-N$ in this study was properly applied in a full-scale wastewater treatment process and was more efficient in aspect to stable effluent.

Estimation and Mapping of Soil Organic Matter using Visible-Near Infrared Spectroscopy (분광학을 이용한 토양 유기물 추정 및 분포도 작성)

  • Choe, Eun-Young;Hong, Suk-Young;Kim, Yi-Hyun;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.968-974
    • /
    • 2010
  • We assessed the feasibility of discrete wavelet transform (DWT) applied for the spectral processing to enhance the estimation performance quality of soil organic matters using visible-near infrared spectra and mapped their distribution via block Kriging model. Continuum-removal and $1^{st}$ derivative transform as well as Haar and Daubechies DWT were used to enhance spectral variation in terms of soil organic matter contents and those spectra were put into the PLSR (Partial Least Squares Regression) model. Estimation results using raw reflectance and transformed spectra showed similar quality with $R^2$ > 0.6 and RPD> 1.5. These values mean the approximation prediction on soil organic matter contents. The poor performance of estimation using DWT spectra might be caused by coarser approximation of DWT which not enough to express spectral variation based on soil organic matter contents. The distribution maps of soil organic matter were drawn via a spatial information model, Kriging. Organic contents of soil samples made Gaussian distribution centered at around 20 g $kg^{-1}$ and the values in the map were distributed with similar patterns. The estimated organic matter contents had similar distribution to the measured values even though some parts of estimated value map showed slightly higher. If the estimation quality is improved more, estimation model and mapping using spectroscopy may be applied in global soil mapping, soil classification, and remote sensing data analysis as a rapid and cost-effective method.

A study on the optimization of tunnel support patterns using ANN and SVR algorithms (ANN 및 SVR 알고리즘을 활용한 최적 터널지보패턴 선정에 관한 연구)

  • Lee, Je-Kyum;Kim, YangKyun;Lee, Sean Seungwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.617-628
    • /
    • 2022
  • A ground support pattern should be designed by properly integrating various support materials in accordance with the rock mass grade when constructing a tunnel, and a technical decision must be made in this process by professionals with vast construction experiences. However, designing supports at the early stage of tunnel design, such as feasibility study or basic design, may be very challenging due to the short timeline, insufficient budget, and deficiency of field data. Meanwhile, the design of the support pattern can be performed more quickly and reliably by utilizing the machine learning technique and the accumulated design data with the rapid increase in tunnel construction in South Korea. Therefore, in this study, the design data and ground exploration data of 48 road tunnels in South Korea were inspected, and data about 19 items, including eight input items (rock type, resistivity, depth, tunnel length, safety index by tunnel length, safety index by rick index, tunnel type, tunnel area) and 11 output items (rock mass grade, two items for shotcrete, three items for rock bolt, three items for steel support, two items for concrete lining), were collected to automatically determine the rock mass class and the support pattern. Three machine learning models (S1, A1, A2) were developed using two machine learning algorithms (SVR, ANN) and organized data. As a result, the A2 model, which applied different loss functions according to the output data format, showed the best performance. This study confirms the potential of support pattern design using machine learning, and it is expected that it will be able to improve the design model by continuously using the model in the actual design, compensating for its shortcomings, and improving its usability.

Comparison of Measured and Calculated Carboxylation Rate, Electron Transfer Rate and Photosynthesis Rate Response to Different Light Intensity and Leaf Temperature in Semi-closed Greenhouse with Carbon Dioxide Fertilization for Tomato Cultivation (반밀폐형 온실 내에서 탄산가스 시비에 따른 광강도와 엽온에 반응한 토마토 잎의 최대 카복실화율, 전자전달율 및 광합성율 실측값과 모델링 방정식에 의한 예측값의 비교)

  • Choi, Eun-Young;Jeong, Young-Ae;An, Seung-Hyun;Jang, Dong-Cheol;Kim, Dae-Hyun;Lee, Dong-Soo;Kwon, Jin-Kyung;Woo, Young-Hoe
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.401-409
    • /
    • 2021
  • This study aimed to estimate the photosynthetic capacity of tomato plants grown in a semi-closed greenhouse using temperature response models of plant photosynthesis by calculating the ribulose 1,5-bisphosphate carboxylase/oxygenase maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), thermal breakdown (high-temperature inhibition), and leaf respiration to predict the optimal conditions of the CO2-controlled greenhouse, for maximizing the photosynthetic rate. Gas exchange measurements for the A-Ci curve response to CO2 level with different light intensities {PAR (Photosynthetically Active Radiation) 200µmol·m-2·s-1 to 1500µmol·m-2·s-1} and leaf temperatures (20℃ to 35℃) were conducted with a portable infrared gas analyzer system. Arrhenius function, net CO2 assimilation (An), thermal breakdown, and daylight leaf respiration (Rd) were also calculated using the modeling equation. Estimated Jmax, An, Arrhenius function value, and thermal breakdown decreased in response to increased leaf temperature (> 30℃), and the optimum leaf temperature for the estimated Jmax was 30℃. The CO2 saturation point of the fifth leaf from the apical region was reached at 600ppm for 200 and 400µmol·m-2·s-1 of PAR, at 800ppm for 600 and 800µmol·m-2·s-1 of PAR, at 1000ppm for 1000µmol of PAR, and at 1500ppm for 1200 and 1500µmol·m-2·s-1 of PAR levels. The results suggest that the optimal conditions of CO2 concentration can be determined, using the photosynthetic model equation, to improve the photosynthetic rates of fruit vegetables grown in greenhouses.