• Title/Summary/Keyword: 판넬

Search Result 399, Processing Time 0.03 seconds

Design and Implementation of Real-Time Management System for Efficient Operation of Motor Control Center (모터제어센터의 효율적인 운영을 위한 실시간 관리 시스템의 설계 및 구현)

  • Lee, Tae-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.247-253
    • /
    • 2008
  • In this paper, we describes the design and implementation of real-time management system for efficient operation via monitoring and control of MCC(Motor Control Center). The real-tine management system can be divided hardware(MCC panel) and software(management program). First, hardware is divided into load attaching motor and MCC components for working together control and data network. Second, software(management system) are consisted of communication interface, environment setting, data processing modules. The produced and implemented reduction model of MCC panel is pretested using m-PRO, iM-PRO devices, and HyperTerminal. For field test, MCC panel is tested by RS-232C/485, communication procedure in management system is certified by transmitting and receiving message using control command. By the experimental results, the implemented real-time management system can be used to operate MCC system.

A Survey on Performance Situation of Animal Welfare Approved Farms of Laying Hens (산란계 동물복지 인증농가의 생산실태 조사)

  • Hong, Eui-Chul;Kang, Bo-Seok;Kang, Hwan-Ku;Jeon, Jin-Joo;Kim, Hyun-Soo;Park, Sung-Bok;Kim, Chan-Ho;Suh, Sang-Won;Kim, Sang-Ho
    • Korean Journal of Poultry Science
    • /
    • v.44 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • The purpose of this survey was to collect basic data on breeding systems of animal welfare-approved laying hen farms in Korea. Questionnaires were mailed to 64 animal welfare-approved farms, and 20 questionnaires (31.3%) were returned. The housing systems were fabric coverlet (4 farms, representing 20%), naturally farmed (Yamagisi, 7 farms, 35%), and steel panel-framed housing (9 farms, 45%). The 20 farms had stocking densities of $2{\sim}3birds/m^2$ (2 farms; 10%), $4{\sim}5birds/m^2$ (10 farms; 50%), and $6{\sim}7birds/m^2$ (8 farms; 40%). Breeding methods were floor-housed (14 farms; 70%), free-range (3 farms; 15%), and floor plus free-range (3 farms; 15%). Stocking density was $4{\sim}6birds/m^2$ at most of the farms with fabric coverlet and naturally farmed housing and $6{\sim}7birds/m^2$ at seven farms (of 9 farms) with a steel panel-framed housing. The daily feed intake of 11 farms (55%) was between 120 and 130 g, which included 3 farms (15%) with fabric coverlet, 3 farms (15%) with naturally farmed housing, and 5 farms (25%) with steel panel-framed housing. The age of peak production was 24~28 weeks overall 20 farms. Over 80% of production on fabric coverlet, naturally farmed, and steel panel-framed house farms was on 3, 4 and 6 farms, respectively. Respiratory disease on the 20 farms represented 55% of total disease incidence, and of each housing type represented 75% (fabric coverlet), 70% (naturally farmed) and 33% (steel panel-framed). E. coli disease was only found in the steel panel-framed housing. Most of the animal welfare-approved eggs were sold at large markets or a real sale markets. Egg price was 200~250 won per egg. These results indicate the current situation of animal welfare-approved farms and could be caused that windowless poultry house was applied to animal welfare approved farms.

The Monitoring System of Photo-voltaic using Smartphone (스마트폰을 이용한 태양광 발전 모니터링 시스템)

  • Park, Jin-Su;Sin, Dong-Suk;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.371-372
    • /
    • 2013
  • 태양광 발전 시스템(photo-voltaic system)은 시간별 발전량이 상이하고 발전중 과전류가 발생하거나 쇼트상태가 되면 태양광 발전 모듈인 태양광 판넬(Solar panels)이 파괴되거나 송전 선로에 이상이 생길 수 있다. 또한 태양광 발전시설의 설비는 고가이며 태양광 패널 하나의 손상이 전체 발전시설의 효율을 현저하게 떨어지게 되거나 생산이 중단된다. 그리고 생산효율이 낮아지거나 발전이 중단되면 금전적으로 심각한 손해가 발생한다. 이러한 경우를 대비하여 태양광 발전 시스템의 이상 유무를 판단하고 관리할 수 있는 시스템이 필요하며, 나아가서는 태양광 판넬에서 생산된 DC전력을 모니터링 할 수 있는 기능과인버터를 통해 사용자에게 공급되는 AC전력을 모니터링 할 수 있는 종합적인 전기 에너지 모니터링 시스템을 필요로 하고 있다. 본 논문은 태양광 발전 시스템을 관리하기 위한 전력 생산량 정보, 과전류 정보, 판넬의 온도를 원격으로 스마트폰 상에 모니터링 하며, 관리자가 원격으로 시설의 전력 생산량을 모니터링 할 수 있도록 구현하여 전력생산설비의 효율적으로 관리 할 수 있음을 제시하고자한다.

  • PDF

Characteristics of the Functional Panel Made from Foamed Aluminum (발포알루미늄을 이용하여 제조한 기능성 판넬 특성 연구)

  • Kim, Jae-Yong;Um, Myeong-Heon;An, Dae-Hyun;Shim, Myeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.62-66
    • /
    • 2006
  • In this work, the properties of environmentally friendly functional panel made from waste aluminum were investigated. Product quality enhancement was pursued through an improved viscosity process, a mixing process by agitating, a foaming process, a cooling process, and a color addition process. An acoustic transmission attenuation test, a sound adsorption rate measurement test, and a foaming condition and scrap mixing test were implemented. As a result, the functional panel made from waste aluminum was ultra lightweight and had excellent properties such as soundproof, sound interception, and shielding harmful electromagnetic waves. Also, the functional panel showed low thermal conductivity (about 2.2 kcal/mh) and excellent heat-insulating property.

An Experimental Study on Radiation/Convection Hybrid Air-Conditioner (복사-대류 겸용 하이브리드 냉방기에 대한 실험 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.288-296
    • /
    • 2019
  • Radiation cooling has used ceilings or floors as cooling surfaces. In such cases, to avoid moisture condensation on the surface, the surface temperature needs be higher than the dew point temperature or an additional dehumidifier is added. In this study, with a goal for residential application, intentional moisture condensation on the cooling surface was attempted, which increased the cooling capacity and improved the indoor comfortness. This method included two separate refrigeration cycles - convection-type dehumidifying cycle and the panel cooling cycle. Test results on the panel cooling cycle showed that, at the standard outdoor ($35^{\circ}C/24^{\circ}C$) and indoor ($27^{\circ}C/19.5^{\circ}C$) condition, the refrigerant flow rate was 8.8 kg/h, condensation temperature was $51^{\circ}C$, evaporation temperature was $8.8^{\circ}C$, cooling capacity was 376 W and COP was 1.75. Furthermore, the panel temperature was uniform within $1^{\circ}C$ (between $13^{\circ}C$ and $14^{\circ}C$). As the relative humidity decreased, the cooling capacity decreased. However, the power consumption remained approximately constant. In the convection-type dehumidification cycle, the refrigerant flow rate was 21.1 kg/h, condensation temperature was $61^{\circ}C$, evaporation temperature was $5.0^{\circ}C$, cooling capacity was 949 W and COP was 2.11 at the standard air condition. When both the radiation panel cooling and the dehumidification cycle operated simultaneously, the cooling capacity of the radiation panel cycle was 333 W and that of the dehumidification cycle was 894 W, and the COP was 1.89. As the fan flow rate decreased, both the cooling capacity of the radiation panel and the dehumidification cycle decreased, with that of the dehumidification cycle decreasing at a higher rate. Finally, a possible control logic depending on the change of the cooling load was proposed based on the results of the present study.