• Title/Summary/Keyword: 파 굴절

Search Result 319, Processing Time 0.035 seconds

Identification of high-dip faults utilizing the GRM technique of seismic refraction method(Ⅱ) -Application to real data- (굴절파 GRM 해석방법을 응용한 고경사 단층 인지 (Ⅱ) -실제 자료 적용-)

  • Kim, Gi Yeong;U, Nam Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.65-74
    • /
    • 1999
  • From refraction data along four seismic profiles near Eonyang which the Yangsan fault passes through, the Slope Variation Indicators (SVI) are computed and interpreted in terms of fault distribution. The average velocities of 2,250-2,870 m/s are estimated using velocity-analysis functions for the target boundary along those profiles. The average velocity for Line 1 is approximately 600 m/s lower than ones for the other lines. The SVI's with amplitude greater than or equal to 0.5 ms/m are turned out to be located near faults shown on the high-resolution reflection section, as closely as one station spacing (3 m). Large amplitude SVI's are densely distributed near National Road 35, and the fault having the largest vertical slip is indicated to be located approximately 930 m west of the inferred fault on the published geologic map.

  • PDF

Comparison of shear-wave sections from inverting refracted shear waves and surface wave dispersions (횡파단면 작성을 위한 굴절된 횡파와 표면파 자료 역산 결과 비교)

  • Lee, Chang, Min;Kim, Ki-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.287-291
    • /
    • 2005
  • Two-dimensional velocity tomograms of P- and S-waves were obtained by inverting traveltimes of first arrivals. The two sections of shear-wave velocity show similar features as a whole, with smaller values on the section from surface wave dispersions. Difficulties in picking SH-wave phases due to noise and later arrivals than P waves and PS converted waves are experienced. In addition, a flat layer model based on the surface wave inversion prohibits applications of the method where sgear wave velocities vary strongly in the lateral direction.

  • PDF

불규칙파의 굴절ㆍ회절 수치모형

  • 채장원;정신택
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1992.08a
    • /
    • pp.83-83
    • /
    • 1992
  • 풍파가 수심이 불규칙하고 조류 및 해류 등의 흐름이 존재하는 연안역을 전파해 갈 때 파고 및 파향이 굴절ㆍ회절 및 천수, 에너지 감쇠 효과 등에 의해 크게 변형된다. 이러한 현상은 연안역의 파랑변형 계산 및 퇴적물이동현상 분석에 매우 중요하다. 불규칙파의 스펙트럼 형태와 에너지의 방향 분산 정도에 따라 단순 규칙파 모델과의 계산치가 50-100%에 이르기도 한다.(중략)

  • PDF

Change of Nearshore Random Waves in Response to Sea-level Rise (해수면 상승에 따른 연안 지역 불규칙파의 변화)

  • Cheon, Se-Hyeon;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.244-254
    • /
    • 2013
  • In this study, a method has been developed for estimating the change of nearshore random waves in response to sea-level rise, by extending the method proposed for regular waves by Townend in 1994. The relative changes in wavelength, refraction coefficient, shoaling coefficient, and wave height for random waves are presented as functions of relative change in water depth. The changes in wavelength and refraction coefficient are calculated by using the significant wave period and principal wave direction in the regular-wave formulas. On the other hand, the changes in shoaling coefficient and wave height are calculated by using the formulas proposed for shoaling and transformation of random waves in the nearshore area including surf zone. The results are proposed in the form of both formulas and graphs. In particular, the relative change in wave height is compared with the result for regular waves.

Spontaneous emission near dielectric interface (굴절율이 다른 경계 근처에서의 원자의 자발방출 특성 연구)

  • 강윤식;김기식;노재우;박대윤;김형주
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.238-239
    • /
    • 2002
  • 본 연구에서는 굴절율이 서로 다른 경계면 근처에 원자가 놓여있는 경우, 조건 변화에 따른 원자의 자발방출의 변화에 대해 다루었다. 굴절율이 작은 쪽의 경계에 있는 원자간 여기상태에 있는 경우, 양쪽 매질로 자발방출이 가능하다. 굴절율이 작은 방향으로의 자발방출은 자유공간에서의 자발방출과 별 다를바가 없다. 그러나 굴절율이 큰 방향으로의 자발방출의 경우에는 원자가 에바네슨트 파와 상호작용하여 방출하는 경우가 나타나므로 전자와는 다르게 접근해야 한다. (중략)

  • PDF

Seismic Studies on Velocity Anisotropy in the Ulsan Fault Zone (울산단층대에서의 굴절파 속도이방성 연구)

  • Lee, Kwang-Ja;Kim, Ki-Young;Kim, Woo-Hyuk;Im, Chang-Bock
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2000
  • As a part of geophysical studies on segmentation of the Ulsan fault, walkaway refraction seismic data were measured at 17 stations near National Road 7 between Kyungju and Ulsan. Seismic anisotropy was analyzed in the offset range of 1-48 m. The average refraction velocity of 1787 m/s indicates the refractor is the upper boundary of weathered basement. P-wave anisotropy is computed to be 0.056 in average, which may serve as a weak evidence that the strike of major geologic structure coincide with the inferred fault direction. In the south of the province boundary between Kyungsangnam-do and Kyungsangbuk-do, the velocity anisotropy is normal in that P-wave velocity in the strike direction is faster than the one measured in the dip direction. On the contrary, it appears that the fault strikes in many directions or that fractures may be developed better in the dip direction in the northern par. Such a difference in anisotropic pattern is believed to be a seismic evidence indicating that a segmentation boundary of the Ulsan fault locates near the province boundary.

  • PDF

Identification of high-dip faults utilizing the GRM technique of seismic refraction method(Ⅰ) - Computer modeling - (굴절파 GRM 해석방법을 응용한 고경사 단층 인지(Ⅰ) - 컴퓨터 모델링 연구 -)

  • Kim, Gi Yeong
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.57-64
    • /
    • 1999
  • To effectively identify near-surface faults with vertical slips from seismic refraction data, the GRM interpretation technique is tested and investigated in terms of various parameters through computer modeling. A characteristic change in shape of the velocity-analysis function near faults is noticed, and a new strategy of `Slope Variation Indicator (SVI)' is developed and tested in this study. The SVI is defined as a first horizontal derivative of the difference of velocity analysis functions for a large XY value and a small one, respectively. As the dip of refractor decreases and as the difference in XY value increases, the peak value of SVI increases and its duration decreases. Consequently, the SVI indicates accurately the location of buried fault in the test models. The SVI is believed to be an efficient tool in seismic refraction method to investigate location and distribution of shallowly buried faults.

  • PDF

Analysis on the Reliability and Influence Factors of Refraction Traveltime Tomography Depending on Source-receiver Configuration (송수신기 배열에 따른 굴절 주시 역산의 영향 인자 및 신뢰성 분석)

  • Lee, Donguk;Park, Yunhui;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.163-175
    • /
    • 2017
  • In land seismic exploration, irregular surface topography and weathering layer in near surface distorts the reflected signals of data. Therefore, typical land seismic data should be compensated for this distortion by static correction. To perform the static correction, near-surface velocity is required, which can be obtained by seismic refraction survey. However, land seismic data is often acquired in a limited form of geometry depending on the equipment availability, accessibility condition, and permission for the survey site. In this situation, refraction analysis should be performed using reflection data because it is impossible to acquire refraction-oriented data due to limited source and receiver geometry. In this study, we aimed to analyze the reliability of the results obtained by refraction traveltime tomography when using reflection data with a limited number of sources and receivers from irregular surface topography. By comparing the inversion result from irregular topography with that from flat surface, we found that the surface topography affects the reliability of the inversion results to some degree. We also found that the number of sources has little effect on the inversion results unless the number of sources are very small. On the other hand, we observed that velocity distortion occurred in the overlapped part of receiver arrays when using a limited number of receivers, and therefore suggested the size of the least overlapping ratio to avoid the velocity distortion. Finally, we performed numerical tests for the model which simulates the surface topography and acquisition geometry of the survey region and verified the reliability analysis of inversion results. We identified reliable areas and suspicious area of the inverted velocity model by applying the analysis results to field data.