• 제목/요약/키워드: 파찰음 인식

검색결과 10건 처리시간 0.028초

한국어 마찰음 및 파찰음의 분석과 인식 (Analysis and Recognition of Korean Fricatives and Affricates)

  • 정석재;정현열;이무영
    • 한국음향학회지
    • /
    • 제10권5호
    • /
    • pp.27-35
    • /
    • 1991
  • 음소를 인식의 기본 단위로 하는 소규모 음성 인식 시스템을 구현하기 위한 기초 연구로서 마 찰음(/ㅅ, ㅆ, ㅎ/) 과 파찰음(/ㅈ, ㅉ, ㅊ/) 에 대하여 지속시간, 평균패턴, 분산비를 이용하여 각 음소 의 특징을 분석하고 각 음소군 내에서의 식별에 유효한 parameter들을 추출하여 인식 실험을 실시하 였다. 지속시간의 분포, 평균패턴의 분포, 분산비의 분포를 이용하여 분석한 결과 6차원 정도의 cepstrum 계수만으로 마찰음 및 파찰음의 식별이 가능하고, 시간 방향의 정보는 음성의 시단으로부터 14 frame 정도의 특징을 인식 파라미터로 할 경우가 최적임을 알 수 있었다. 이를 이용한 인식실험 결과에서는 조음방법별로 분류된 음소군내의 각 음소에 대한 인식실험의 인식률 보다는 발음방법별 인식실험시의 인식률이 높게 나타나 동일 음소군 내에서의 각 음소에 대한 식별이 더 어려움을 알 수 있었고, 특징 파라미터의 길이를 음성의 시단으로부터 14 frame 정도로 했을 때 조음방법별 인식률은 평균 81.1%, 발음방법별 인식률은 평균 97.9%로 최고의 인식률을 나타내었다. 특징 파라미터의 길이 를 14 frame 이상으로 증가시켜도 인식률은 큰 변화가 없어 분석 결과를 잘 설명하고 있음을 알 수 있었다.

  • PDF

SOFM 신경회로망을 이용한 한국어 음소 인식 (Korean Phoneme Recognition Using Self-Organizing Feature Map)

  • 전용구
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1993년도 학술논문발표회 논문집 제12권 1호
    • /
    • pp.233-237
    • /
    • 1993
  • 본 논문에서는 패턴 매칭 방법에 근거하여 인식 단위가 음소인 음소 기반 인식 시스템을 구성하였다. 선택한 신경망 구조는 생물학적 신경망인 코호넨(T. Kohonen)의 SOFM(Self-Organizing Feature Map)으로 패턴 매칭 과정 중 cluster로 사용하였다. SOFM 신경망은 신호 공간에 대해서 최적의 국소(局所) 해부적 사사에 의한 자기 조직화 과정을 수행하며, 그 결과 인식 문제에 있어서 상당히 높은 정확도를 나타낸다. 따라서 SOFM 신경망은 음소 인식에도 효과적으로 응용될 수 있다. 또한 음소 인식 시스템의 성능 향상을 위해 K-means 클러스터링 알고리즘이 결합된 학습 알고리즘을 제안하였다. 제안된 음소 인식 시스템의 성능을 평가하기 위해, 먼저, 우리말 음소들을 모음, 파열음, 마찰음, 파찰음, 유음 및 비음, 종성의 6개 음소군으로 분류하고 각 음소군에 대한 특징 지도를 구성하여 labeler의 기능을 수행하게 하였다. 화자 종속 인식실험 결과 87.2%의 인식률을 보였으며 제안한 학습법의 빠른 수렴성과 인식률 향상을 확인하였다.

  • PDF

한국어 음소인식을 위한 기준 프레임 추출 (Typical Frame Etraction for Korean Phoneme Recognition)

  • 김범국
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 제11회 음성통신 및 신호처리 워크샵 논문집 (SCAS 11권 1호)
    • /
    • pp.121-124
    • /
    • 1994
  • 음소를 인식의 기본으로 하는 한국어 음성인식 시스템을 구현하기 위한 기초 연구의 일환으로서 각 음소의 특징 가장 잘 표현하는 기준프레임 추출을 위한 연구를 수행하였다. 이를 위하여 먼저 선행 실험과 분산비 분석을 통해서 인식에 필요로한 시간 패턴의 길이를 추출한 후 이를 바탕으로 통계적 인식방법인 베이즈 결정법칙을 이용하여 시단 프레임으로부터 3프레임씩 시점을 1프레임씩 옮기면서 인식 실험을 해?여, 각 음소별 특징이 가장 풍부한 기준 프레임을 추출하였다. 그리고 이 기준 프레임을 중심으로 각 음소군별 인식 실험을 수행하여 그 결과를 시단을 기준으로 한 경우와 비교 검토하고 한국어 전 음소별로 확장하여 인식 실험을 실시하였다. 이 실험 결과 모음의 경우 시단으로부터 5프레임, 파열음은 시단에서부터 5프레임사이, 마찰음은 3프레임에서부터 10프레임까지, 파찰음은 5프레임까지, 비음과 유음의 경우 초성은 시단 프레임에서 6프레임, 종성은 종단으로부터 전 4프레임 구간이 인식률이 높게 나타나 이 부분의 특징이 인식에 가장 유효함을 알 수 있었다.

  • PDF

음소 인식을 위한 수정된 LVQ2 알고리즘의 고찰 (A Modified LVQ2 Algorithm for Phonemes Recognition)

  • 황철준
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1996년도 영남지부 학술발표회 논문집 Acoustic Society of Korean Youngnam Chapter Symposium Proceedings
    • /
    • pp.76-79
    • /
    • 1996
  • 본 논무에서는 한국어 음소를 대상으로 Kohonen 이 제안한 LVQ2 방법의 결저을 보완한 MLVQ2 방법으로 인식실험을 행하고 MLVQ2 알고리즘의 유효성을 검토하고자 한다. 인식실험을 위한 음성자료는 ETRI 611단어로부터 추출한 49음소를 사용하였다. 그리고 인식실험에 있어서는 먼저 파열음을 대상으로 학습회수, 표준패턴의 수, 샘플수에 따른 인식률의 변화를 조사하였으며, 이 결과 표준패턴의 수 15개, 학습회수 10회 이하, 샘플 수 3000 개일 경우가 가장 좋은 인식률을 보였다. 이 결과를 참고로 음소군별 인식실험 결과 모음 69.11%, 파열음 74.69%, 마찰음 및 파찰음 86.31%비음 및 유음 74.51%의 평균 인식률을 얻었다. 또한 , 한국어 49음소 전음소에 대한 인식실험 결과 71.2%의 인식률 얻어 MLVQ2의 유효성을 확인하였다.

  • PDF

음소 인식을 위한 특징 추출의 위치와 지속 시간 길이에 관한 연구 (A Study on Duration Length and Place of Feature Extraction for Phoneme Recognition)

  • 김범국;정현열
    • 한국음향학회지
    • /
    • 제13권4호
    • /
    • pp.32-39
    • /
    • 1994
  • 한국어 음성인식 시스템을 구현하기 위한 기초 연구로서 한국어 전음소를 대상으로 1) 각 음소의 특성을 가장 잘 나타내는 최적의 위치, 2) 최고의 인식률을 얻기 위한 적당한 지속시간길이를 찾기위해서 음소인식을 수행하였다. 인식실험을 위해 특징파라메터로 21차원 켑스트럼계수를 이용하여 베이즈 결정법칙으로서 세화자에 대한 종속인식실험을 행하였다. 인식실험결과 최고의 인식률을 보이는 최적의 특징추출의 위치는 모음에서는 10~50ms, 마찰음및 파찰음은 40~100ms, 비음, 유음은 10~50ms, 그리고 파열음은 10~50ms임을 알 수 있었다. 또, 35 전음소를 대상으로한 인식에 있어서는 최고의 인식률을 얻기위한 지속시간 정 보의 길이는 60~70ms정도가 충분함을 알 수 있었다.

  • PDF

변동성과 전환점에 기반한 한국어 음소 'ㅅ', 'ㅈ', 'ㅊ' 음성 인식 (Speech Recognition of Korean Phonemes 'ㅅ', 'ㅈ', 'ㅊ' based on Volatility and Turning Points)

  • 이재원
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제20권11호
    • /
    • pp.579-585
    • /
    • 2014
  • 음소는 음성을 구성하는 최소 단위로서 음성을 인식하는데 있어 매우 중요한 역할을 한다. 본 논문은 음소 기반 한국어 음성 인식의 일부로서, 한국어 음소 중 'ㅅ', 'ㅈ', 'ㅊ'에 대한 새로운 인식 방안을 제안한다. 제안하는 방식은 입력 음성 신호를 구성하는 각각의 블록에 대해 계산되는 변동성 지표와 전환점 지표에 기반한다. 변동성 지표는 블록 내의 인접한 샘플 값들의 차이의 총합이며, 전환점 지표는 블록 내에서 샘플 값의 증가와 감소의 방향이 전환되는 극점의 총수이다. 두 지표를 결합하여 음소 인식을 수행하는 인식 알고리즘은 두 지표와 관련하여 최적화된 임계치들을 활용하여 목표로 하는 세 가지 음소가 인식된 위치를 최종적으로 결정한다. 실험 결과를 통해, 제안하는 방식을 사용함으로써 기존의 방식들에 비해 FRR과 FAR의 관점에서 모두 오류율을 현저히 감소시킬 수 있음을 확인하였다.

저자원 환경의 음성인식을 위한 자기 주의를 활용한 음향 모델 학습 (Acoustic model training using self-attention for low-resource speech recognition)

  • 박호성;김지환
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.483-489
    • /
    • 2020
  • 본 논문에서는 저자원 환경의 음성인식에서 음향 모델의 성능을 높이기 위한 음향 모델 학습 방법을 제안한다. 저자원 환경이란, 음향 모델에서 100시간 미만의 학습 자료를 사용한 환경을 말한다. 저자원 환경의 음성인식에서는 음향 모델이 유사한 발음들을 잘 구분하지 못하는 문제가 발생한다. 예를 들면, 파열음 /d/와 /t/, 파열음 /g/와 /k/, 파찰음 /z/와 /ch/ 등의 발음은 저자원 환경에서 잘 구분하지 못한다. 자기 주의 메커니즘은 깊은 신경망 모델로부터 출력된 벡터에 대해 가중치를 부여하며, 이를 통해 저자원 환경에서 발생할 수 있는 유사한 발음 오류 문제를 해결한다. 음향 모델에서 좋은 성능을 보이는 Time Delay Neural Network(TDNN)과 Output gate Projected Gated Recurrent Unit(OPGRU)의 혼합 모델에 자기 주의 기반 학습 방법을 적용했을 때, 51.6 h 분량의 학습 자료를 사용한 한국어 음향 모델에 대하여 단어 오류율 기준 5.98 %의 성능을 보여 기존 기술 대비 0.74 %의 절대적 성능 개선을 보였다.

SOFM 신경회로망을 이용한 한국어 음소 인식 (Korean Phoneme Recognition Using Self-Organizing Feature Map)

  • 전용구;양진우;김순협
    • 한국음향학회지
    • /
    • 제14권2호
    • /
    • pp.101-112
    • /
    • 1995
  • 본 논문에서는 패턴 매칭 방법에 근거하여 인식 단위가 음소인 음소 기반 인식 시스템을 구성하였다. 선택한 신경망 구조는 생물학적 신경망인 코호넨(T. Kohonen)의 SOFM(Self-Organizing Feature Map)으로 패턴 매칭 과정 중 클러스터러(clusterer)로 사용하였다. SOFM 신경망은 신호 공간에 대해서 최적의 국소(局所) 해부적 사상(local topographical mapping)에 의한 자기 조직화 과정을 수행하며, 그 결과 인식 문제에 있어서 상당히 높은 정확도를 나타낸다. 따라서 SOFM 신경망은 음소 인식에도 효과적으로 응용될 수 있다. 또한 음소 인식 시스템의 성능 향상을 위해 K-means클러스터링 알고리즘이 결합된 학습 알고리즘을 제안하였다. 제안된 음소 인식 시스템의 성능을 평가하기 위해 먼저, 인식 대상음소는 모음군 17개, 자음의 경우 파열음9개, 마찰음 3개, 파찰음 3개, 유음 및 비음 4개, 음소의 성질이 다른 종성 7개의 음소군으로 모두 43개의 음소를 대상으로 실험하였으며, 각 음소군에 대한 특징 지도를 구성하여 레이블러(labeler)의 기능을 수행하게 하였다. 화자 종속 인식 실험 결과 $87.2\%$의 인식률을 보였으며 제안한 학습법의 빠른 수렴성과 인식률 향상을 확인하였다.

  • PDF

웨이브렛 계수의 표준편차를 이용한 음성신호의 적응 잡음 제거 (Adaptive Noise Reduction using Standard Deviation of Wavelet Coefficients in Speech Signal)

  • 황향자;정광일;이상태;김종교
    • 감성과학
    • /
    • 제7권2호
    • /
    • pp.141-148
    • /
    • 2004
  • 일상생활의 대화중에 포함되는 잡음, 특히 모든 주파수 대역에 포함되는 백색잡음에 의해 오염된 음성신호는 청각적으로 심한 불쾌감과 거부감을 주며 대화의 명료성을 저해시키는 요인으로 작용할 수 있다. 본 논문은 이러한 잡음환경 하에서 음성인식을 위하여 음성에 부가된 잡음을 제거하는 방범으로 프레임 단위로 웨이브렛 변환을 하여 웨이브렛 계수의 표준편차를 이용하여 시간 적응 임계값을 정하는 새로운 방법을 제안한다. 음성의 특성을 고려하기 위하여 고주파 성분을 많이 가지는 무성음의 경우는 cD1 신호에서, 저주파 성분을 많이 가지는 유성음의 경우는 cA3 신호의 표준편차를 이용하여 시간 적응 임계값을 설정하였다. 실험을 통해 제안한 방법이 일반적인 웨이브렛 변환과 웨이브렛 패킷 변환을 이용한 방법보다 SNR과 MSE 측면에서 향상됨을 확인할 수 있었다. 또한 웨이브렛 변환과 웨이브렛 패킷 변환에서는 파열음, 마찰음 및 파찰음 성분이 많이 제거되는 반면 제안한 방법은 본래 신호와 유사하게 복원됨을 실험 결과 확인할 수 있었다.

  • PDF

HMM기반 자동음소분할기의 음소분할 오류 유형 분석 (The Error Pattern Analysis of the HMM-Based Automatic Phoneme Segmentation)

  • 김민제;이정철;김종진
    • 한국음향학회지
    • /
    • 제25권5호
    • /
    • pp.213-221
    • /
    • 2006
  • 합성음의 음질을 향상시키기 위하여 분할된 corpora로부터 합성유닛을 선택하여 사용하는 연속음성합성에서 정확한 음소분할은 매우 중요하다. 일반적으로 음소분할은 사람에 의해 수행되지만 많은 작업량으로 인한 시간적 지연, 일관 성 유지 어려움 등 많은 문제가 발생한다. 이에 따라 음성인식에서 도입된 HMM 기반의 자동음소분할이 음성인식, 음성 합성에서 널리 사용되어지고 있지만 음성전문가의 수작업 결과와 비교할 때 HMM 기반 자동음소분할은 오류가 있고, 이는 합성음 품질의 열화의 주요 원인이 되고 있다. 본 논문에서는 HMM 기반의 자동음소분할기를 사용하여 나타난 자동음소분할 결과와 수작업에 의한 음소분할 결과를 비교하고 유형별로 분석함으로써 음성합성의 성능향상을 위해 개선해야 할 문제점들을 제시한다. 실험에서는 ETRI의 표준형 한국어 공통 음성 DB을 사용하였고, 오차의 범위가 20ms를 벗어난 경우를 분절 오류로 간주하였다. 실험 결과 여성화자의 경우 파열음 + 모음, 파찰음 + 모음, 모음 + 유음 음소쌍에서는 각각 약 99%, 99.5%, 99%의 높은 정확률을 보인 반면, 폐쇄음 + 비음, 폐쇄음 + 유음, 비음 + 유음 음소쌍에서는 44.89%, 50%, 55% 의 낮은 정확률을 보였으며, 남성화자에 대한 실험결과에서도 유사한 경향을 보였다.