• Title/Summary/Keyword: 파이프 설치

Search Result 156, Processing Time 0.025 seconds

Greenhouse structural analysis according to various section type (온실 서까래용 파이프의 단면형상에 따른 구조적 특성 변화)

  • 윤남규;이시영;김학주;남윤일;김문기;유인호
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2002.11a
    • /
    • pp.289-292
    • /
    • 2002
  • 최근들어 파이프 골조의 온실 구조는 해마다 강풍이나 적설 둥으로 인한 파손으로 막대한 경제적 손실을 입고 있으며, 이러한 피해는 환경조절 및 자동화 설비의 설치에 직접적인 영향을 주는 중요한 요인이므로 시설의 구조역학적인 연구가 지속적으로 이루어져야 한다. 그러나 국내에서는 1990년대 초반 온실의 구조안전 및 구조설계 기준 설정, 자재의 규격화 및 표준화에 관한 연구가 일부 수행된 바 있으나, 파이프 골조의 온실은 구조물로서의 공학적 설계나 유지관리에 대한관심이 부족하여 시설의 구조역학적인 연구가 거의 이루어지고 있지 않는 실정이다. (중략)

  • PDF

해저지반 굴삭용 워터젯 장비의 시공성능 추정에 관한 기초적 연구

  • Na, Gyeong-Won;Jo, Hyo-Je;Baek, Dong-Il;Hwang, Jae-Hyeok;Han, Seong-Hun;Jang, Min-Seok;Kim, Jae-Hui
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.15-16
    • /
    • 2015
  • 해저파이프라인 및 해저케이블 설치해역이 대수심으로 이동함에 따라 육지와는 다른 열악한 시공 환경에 놓이게 된다. 이때 파이프라인 및 케이블이 매설되는 해저지반 상태와 작업이 이루어지는 해역의 해상조건 등은 작업효율에 영향을 미치기 때문에 효율적인 시공이 필요하다. 본 논문은 구조물 매설에 앞서 해저지반 굴삭 작업을 수행하기 위해 ROV 트렌쳐의 하단에 장착되는 워터젯 굴삭기의 작업효율 및 시공성능 추정에 관한 연구이다. 먼저 전산유체해석을 통해 워터젯 굴삭기의 굴삭효율을 극대화할 수 있는 노즐 수량을 정하였고, 모형실험을 수행하여 굴삭기의 시공성능을 예측할 수 있는 최대 굴삭심도 및 최대 굴삭속도를 파악하였다. 이를 바탕으로 실제 운용중인 워터젯 굴삭장비들과 시공성능을 비교 분석하였다.

  • PDF

KMTNet 자료처리 파이프라인 개발 현황

  • Kim, Dong-Jin;Lee, Chung-Uk;Kim, Seung-Ri;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.155.1-155.1
    • /
    • 2012
  • 한국천문연구원에서 개발 중인 외계행성 탐색시스템(Korea Microlensing Telescope Network, KMTNet)은 칠레, 남아프리카 공화국 및 호주에 3대의 동일한 사양을 갖는 1.6m 광시야 망원경과 $18K{\times}18K$ 모자이크 CCD 카메라를 설치하여 우리은하 중심방향에 대한 24시간 측광 모니터링을 통해 외계행성을 발견하는 것을 주된 연구목표로 가지고 있다. 특히 3개 관측소 중 가장 좋은 시상조건을 갖는 칠레 관측소의 경우에는 하룻밤에 최대 200GB의 관측 자료를 생산하고, 관측된 영상을 관측 다음날 네트워크를 통하여 모두 한국으로 가져온 후 일괄 자료처리과정을 거쳐 측광자료로 변환할 계획이다. 이에 우리는 효율적인 자료처리를 위해 관측영상을 특정 크기로 자르고 클러스터 시스템을 이용하여 분산 처리할 수 있는 파이프라인을 개발하였다. 이 발표에서는 우리가 구현한 KMTNet 자료처리 파이프라인의 전반적인 구성과 모의 관측 자료를 이용한 성능시험 결과 및 향후 영상자료의 증가에 따른 저장장치와 클러스터 시스템의 확장 계획에 대해 소개한다.

  • PDF

Analytical Study on Thermal Cracking Control of Mass Concrete by Vertical Pipe Cooling Method (연직파이프쿨링 공법에 의한 매스콘크리트 온도균열 제어에 관한 해석적 연구)

  • Seo, Tae-Seok;Cho, Yun-Gu;Lee, Kewn-Chu;Lim, Chang-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.57-62
    • /
    • 2014
  • In this study, the vertical pipe cooling method was developed to propose the pipe cooling method suited for the vertically long mass concrete structures. FEM (finite element method) analysis was carried out to investigate the validity of the vertical pipe cooling method, and the temperature, the behavior of tensile stress of concrete and the crack index were investigated. In result, it was confirmed that the vertical pipe cooling method was effective in the thermal cracking control of mass concrete member.

Trend and Review of Corrosion Resistant Alloy (CRA) for Offshore Pipeline Engineering (내식합금 (CRA) 동향 및 해양 파이프라인 설계 적용에 대한 고찰)

  • Yu, Su-Young;Choi, Han-Suk;Lee, Seung-Keon;Kim, Do-Kyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.85-92
    • /
    • 2014
  • Offshore fields are increasingly important for the development of offshore resources due to the growing energy needs. However, an offshore field for oil and gas production has difficult development conditions, e.g., high temperature, high pressure, sweet/sour compositions of fluids, etc. Corrosion is one of the biggest issues for offshore pipeline engineering. In this study, a Corrosion Resistant Alloy (CRA) pipe for corrosion prevention was investigated through its global demand and trends, and three types of CRA pipelines were introduced with detailed explanations. The usefulness of CRA was also evaluated in comparison to a carbon steel pipeline in terms of the structural strength, cost, and other factors. Offshore pipeline engineering, including mechanical design and verification of the results through an installation analysis based on numerical software, was performed for the carbon steel type and solid CRA type. The results obtained from this study will be useful data for CRA pipeline designers and researchers.

Evaluation of Seismic Performance of 2-Story Fire Protection Sprinkler Piping System (화재방호계통 복층구조 스프링클러 파이프라인 내진성능 평가)

  • Jeon, Jun-Tai;Jung, Woo-Young;Ju, Bu-Seog
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.3
    • /
    • pp.458-464
    • /
    • 2014
  • Fire protection (sprinkler) piping system is an essential element for the energy supply and for the protection against the seismic-induced fire during and after an earthquake. The primary objective of this study was to understand the seismic performance of complex two-story piping system installed in a low-rise building subjected to bi-directional and three-directional earthquakes. The result of current study revealed that the displacement of the piping system in accordance with floor level was significantly different due to acceleration-sensitivity but the effect of the piping system due to the vertical direction earthquake was not significant.

A Study on Underwater-Pipe Video Image Mosaicking using Digital Photogrammetry (수치사진측량을 이용한 수중 파이프 비디오 모자익 영상 제작에 관한 연구)

  • Kang, Jin-A;Kwon, Kwang-Seok;Kim, Byung-Guk;Oh, Yoon-Seuk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.4
    • /
    • pp.150-160
    • /
    • 2008
  • The present domestic underwater and ocean facilities management depends on analysis with the naked eye. This study performs quantitative analysis to improve conventional methods, analyze spatial situation of underwater facilities. This research is divided into two steps; underwater image distortion correction and image mosaic step. First, underwater image distortion correction step is for the production of underwater target, calculates the correction parameters, and then developed the method that convert the original image point to whose distortion is corrected. Second step is for the obtaining pipe images installed in the underwater, corrects the distortion, and then transforms a coordinates of the correction pipe image. After coordinate transformation, we make the mosaic image using the singularities. As a result, when we measure the distance between pipe and underwater ground and compare with calculation value on mosaic image, it is showed that RMSE is 0.3cm.

  • PDF

Permeation of Organic Chemicals through Gasketed Cast Iron Pipe (주물 파이프 Gasket을 통한 유기화학물질의 이동)

  • Yong-Chan Seo;Nack-Joo Kim
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.45-50
    • /
    • 1999
  • Four cast iron pipe sections containing 3 styrene butadiene rubber (SBR) gaskets (1 joint and 2 end caps) were filled with water and maintained at approximately 40 psi internal pressure. The pipe sections were placed inside 16 gallon drums filled with initially clean sand. Three of the tanks were subsequently contaminated with gasoline, gasoline spiked with pyrene and naphthalene, and toluene. The forth tank served as a control. The water inside each pipe was monitored over time for organic chemical contamination. Permeation of organic chemicals into the water inside the pipe systems was found to occur in all 3 contaminated pipe systems after approximately 100 days as measured organic chemicals concentrations were significantly above those in the uncontaminated cell. Flushing experiments in which the water inside the contaminated pipes was replaced with initially clean water showed that organic chemical concentrations inside the pipe rapidly (12 days) reached their preflushing levels.

  • PDF

Automatic Fire Extinguisher Having Flammable Pipes Inserted in a Cultural Assets Roof (가연성 파이프 시공에 의한 전통가옥지붕에 매설된 자동소화장치)

  • Cho, Taejun;Kim, Jae-Jun
    • The magazine of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.2
    • /
    • pp.26-31
    • /
    • 2014
  • This invention is purposed to provide an innovative solution for the inside of roof structures, which is cultural assets. The Asian old houses generally have several layered roofs on top of the structures. If a fire has started inside of the roof, it is hard to be extinguished before eliminating all the upper layers of the roof. This invention provides pre constructed embedded pipes, which is flammable and easy to be dissolved by the fire. The material of pipe is composed of rubbers, of which the combustion point is so low that the extinguishing of initial fire is possible without additional fire service. The inside of pipe is filled with halon gas. If the filled gas is consumed after ignited by fire, additional fire extinguishing water is supplied. If the flexible pipes are totally combusted by a big fire, the sprinkler at the end of inflexible pipe will work continuously, which is located between flexible and inflexible pipes. The extinguishing pipe network is suggested as dividing whole roof as multiple sections for a swift fire extinguishing in case of intentional or natural fire attack to our invaluable cultural assets.

  • PDF

A Study on the Buckling Stability due to Lateral Impact of Gas Pipe Installed on the Sea-bed (해저면에 설치된 가스관의 외부충격에 의한 좌굴 안전성 검토)

  • Park, Joo-Shin;Yi, Myung-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.414-421
    • /
    • 2022
  • Subsea oil and gas exploration is increasingly moving into deeper water depths, and typically, subsea pipelines operate under high pressure and temperature conditions. Owing to the difference in these components, the axial force in the pipe is accumulated. When a pipeline is operated at a high internal pressure and temperature, it will attempt to expand and contract for differential temperature changes. Typically, the line is not free to move because of the plane strain constraints in the longitudinal direction and soil friction effects. For a positive differential temperature, it will be subjected to an axial compressive load, and when this load reaches a certain critical value, the pipe may experience vertical (upheaval buckling) or lateral (snaking buckling) movements that can jeopardize the structural integrity of the pipeline. In these circumstances, the pipeline behavior should be evaluated to ensure the pipeline structural integrity during operation in those demanding loading conditions. Performing this analysis, the correct mitigation measures for thermal buckling can be considered either by accepting bar buckling but preventing the development of excessive bending moment or by preventing any occurrence of bending.