• Title/Summary/Keyword: 파이로스타터

Search Result 5, Processing Time 0.024 seconds

Development of a Rupture Disk for Pyrostarters (파이로스타터용 럽쳐디스크 개발)

  • Park, Ho-Jun;Hong, Moon-Geun;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.219-222
    • /
    • 2009
  • Pyrostarters play a role as a turbopump starter in liquid propellant propulsion systems by supplying pressurized gas to power turbines for engine start. A rupture disk in pyrostarters, which is usually installed behind a nozzle throat, not only isolates the charged solid propellants from the external environment but also improves the ignitability of the solid propellants by increasing a chamber pressure at the beginning of combustion. Experimental tests have been performed to study the effects of rupture disk thickness, depth and shape of scores, and pressure build-up rates on burst pressures and burst diameters. The experimental results show that the developed rupture disk fulfills the performance requirements expected in a real operational condition.

  • PDF

The current status of the development of pryostarters (파이로스타터 개발 현황)

  • Hong, Moon-Geun;Lee, Soo-Yong
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.204-209
    • /
    • 2010
  • The current status of the development of pyrostarters, which play a role as a turbo pump starter in liquid propellant propulsion systems by supplying pressurized gas to power turbines for engine start, has been introduced. Firstly, the development history is briefly summarized, and secondly the current technical status in core parts for the development of pryrostarters such as solid propellants, internal ballistics, rupture discs, and igniters are presented. The current technical achievements could make it feasible to fulfill the development requirements for pyrostarters.

Development of an Igniter for Pyrostarters (파이로스타터용 점화기 개발)

  • Park, Ho-Jun;Hong, Moon-Geun;Kwon, Mi-Ra;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.149-152
    • /
    • 2009
  • A pyrostarter is a sort of gas generator, which supplies the energy to drive turbines by the combustion gas of a solid propellant charged internally. The igniter of the pyrostarter should guarantee the ignition reliability expecially for the solid propellant with a low fame temperature. For the development of the igniter, several closed bomb testes have been performed to decide several design parameters to get a sufficient chamber pressure build-up for the ignition. Moreover, as a result of the firing testes with pyrostarters, the ignition reliability have been verified and the amount of igniter propellants has been reviewed.

  • PDF

An introduction to present Research and Development condition about Solid Rocket Motor for Space Launch Vehicle (우주발사체용 고체 추진기관 개발현황 소개)

  • Kwon, Tae-Hoon;Shim, Myung-Sik;Song, Jong-Kwon;Lee, Won-Bok;Choi, Seong-Han;Suh, Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.623-626
    • /
    • 2009
  • Hanwha Corporation Daejeon Plant have developed apogee Kick Motor of KSLV-I that is the first among nation space launch vehicle for five years from 2003. Now, we are joining in KSLV-II(Korea Space Launch Vehicle-II) project and developing Pyro starter which is turbo pump for the first start-up of liquid propulsion supply.

  • PDF

Pressure loss coefficient measurements of pyrostarter filters (파이로스타터용 필터 압력손실계수 측정)

  • Hong, Moon-Geun
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.126-133
    • /
    • 2007
  • An experimental apparatus has been designed and prepared in order to measure a pressure loss coefficient of hydropneumatic components, which is an important parameter in a hydropneumatic system Blow-down system has been adopted for the experimental apparatu to meet the high flow energy requirement as well as the apparatus safety. Especially, pressure loss coefficient measurements of pyrostarter filters have been performed and the pressure loss coefficient, K of CQSF has been experimentally acquired. Then it is shown that the turbine inlet pressure $p_2$, which is predicted from the measured K, is in accord with the results of combustion tests. Moreover, the relation between K and combustion pressure $p_0$ has been presented and it is disclosed that the relation accords well with the results of combustion tests. It is anticipated that K of a filter could play a role in PS size reduction by rising up the combustion pressure resulting in increasing the burning rate of solid propellant.

  • PDF