• Title/Summary/Keyword: 파쇄 압력

Search Result 67, Processing Time 0.034 seconds

Dead Pressure and its measures of Emulsion Explosives at Small Sectional Tunnel (소단면 터널에서 에멀젼폭약의 사압현상과 대책)

  • Min, Hyung-Dong;Jeong, Min-Su;Jin, Yeon-Ho;Park, Yun-Suk
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.29-37
    • /
    • 2008
  • In general, the size of tunnel cross section in construction site is $50{\sim}200m^2$. But, electric cable tunnel, telecommunication cable tunnel, mine tunnel. Waterproof tunnel have small cross section less than $20m^2$. There are so many problem at small sectional tunnel: restriction of equipment, dead pressure by precompression, loss of efficiency, increase of work time. Especially, explosives remainder by precompression of previous detonation is serious problem. To find its measures of dead pressure (explosives remainder), the following series of progress have been conducted: (1) survey of previous study (2) investigate causes of dead pressure (3) set up of its measures (4) application and appraisal at tunnel site. The measures, change of cut pattern, hole space over 40cm, adjustment of delay time, are proved by experimental results.

Security and Safety Assessment of the Small-scale Offshore CO2 Storage Demonstration Project in the Pohang Basin (포항분지 해상 중소규모 CO2 지중저장 실증연구 안전성 평가)

  • Kwon, Yi Kyun;Chang, Chandong;Shinn, Youngjae
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.217-246
    • /
    • 2018
  • During the selection and characterization of target formations in the Small-scale Offshore $CO_2$ Storage Demonstration Project in the Pohang Basin, we have carefully investigated the possibility of induced earthquakes and leakage of $CO_2$ during the injection, and have designed the storage processes to minimize these effects. However, people in Pohang city have a great concern on $CO_2$-injection-intrigued seismicity, since they have greatly suffered from the 5.4 magnitude earthquake on Nov. 15, 2017. The research team of the project performed an extensive self-investigation on the safety issues, especially on the possible $CO_2$ leakage from the target formation and induced earthquakes. The target formation is 10 km apart from the epicenter of the Pohang earthquake and the depth is also quite shallow, only 750 to 800 m from the sea bottom. The project performed a pilot injection in the target formation from Jan. 12 to Mar. 12, 2017, which implies that there are no direct correlation of the Pohang earthquake on Nov. 15, 2017. In addition, the $CO_2$ injection of the storage project does not fracture rock formations, instead, the supercritical $CO_2$ fluid replaces formation water in the pore space gradually. The self-investigation results show that there is almost no chance for the injection to induce significant earthquakes unless injection lasts for a very long time to build a very high pore pressure, which can be easily monitored. The amount of injected $CO_2$ in the project was around 100 metric-tonne that is irrelevant to the Pohang earthquake. The investigation result on long-term safety also shows that the induced earthquakes or the reactivation of existing faults can be prevented successfully when the injection pressure is controlled not to demage cap-rock formation nor exceed Coulomb stresses of existing faults. The project has been performing extensive studies on critical stress for fracturing neighboring formations, reactivation stress of existing faults, well-completion processes to minimize possible leakage, transport/leakage monitoring of injected $CO_2$, and operation procedures for ensuring the storage safety. These extensive studies showed that there will be little chance in $CO_2$ leakage that affects human life. In conclusion, the Small-scale Offshore $CO_2$ Storage Demonstration Project in the Pohang Basin would not cause any induced earthquakes nor signifiant $CO_2$ leakage that people can sense. The research team will give every effort to secure the safety of the storage site.

Barometric Efficiency study for the aquifer characteristics of Taegu region (Barometric Efficiency(B.E) 계산결과에 의한 대구지역 대수층(帶水層) 특성연구)

  • 성익환
    • The Journal of Engineering Geology
    • /
    • v.2 no.1
    • /
    • pp.58-69
    • /
    • 1992
  • Change in atmospheric pressure produce sizable fluctuafions in wells penetrafing confined aquifers. The relationship is inverse; that is, increases in atmospheric pressure produce decreases in water levels, and conversely. When atmospheric pressure changes are expressed in terms of a column of water, the raflo of water level change to pressure change expresses the barometric efficiency of an aquifer. In the study area, aquifers are developed in the fractures, joints, bedding planes and occasionally in solufion cavities of marl interbeds. The barometric efficiency of the aquifer varies from 8 to 90%, indicating that Confined, Unconfined and Semi-Confined condifions exist locally. The barometric efficiency is characteristic of the aquifer itself and observed in the field is inversely proportional to specific storage or the storage coefficient. It is remalned in question to derive the relationship between B.E. and S.

  • PDF

Application & Examination of the Plan for Optimum Stability through Water-hammer in Pipe Line and Booster Pump Station (관로계통 및 가압펌프장 수격에 따른 최적 안정성 확보방안)

  • Ra, Beyong-Pil;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.5
    • /
    • pp.19-24
    • /
    • 2009
  • This paper is performed to find out the stability of water-hammer in pipe line and pump station that is happened when additional water needs demanded. At first, the water supply construction project is planned to supply $6,000\;m^3/day$ through 17.9 km pipe line. But additional demand ($1,200\;m^3/day$) happened from Cheong-ra water reservoir. In this situation, air-chamber($4\;m^3$) and vacuum breaker valve(${\varphi}100\;mm$) are needed to prevent water-hammer. When the additional water is supplied, the existing facilities (air-chamber, vacuum breaker valve) are sufficient to alleviate shock not changing capacity alteration, judging from the airspace change and rise. Therefore, there is no problem for water-hammer by installing air-chamber($4\;m^3$) and vacuum breaker valve(${\varphi}100\;mm$) at the top of Yeo-ju hill.

Study on the Dynamic Response Characteristics of Impact Force Sensors Based on the Strain Gage Measurement Principle (변형률 게이지 측정원리를 이용한 충격하중 측정 센서의 동적응답 특성에 관한 연구)

  • Ahn, Jung-Lyang;Kim, Seung-Kon;Sung, Nak-Hoon;Song, Young-Soo;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.29 no.1
    • /
    • pp.41-47
    • /
    • 2011
  • In order to estimate blast damage zone and control rock fragmentation in blasting, it is important to obtain information regarding blast hole pressure. In this study, drop impact tests of acrylic, aluminium, steel sensors were performed to investigate the dynamic response characterizations of the sensors through the strain signals. As a result, the strain signals obtained from the steel sensors showed less sensitivity to impact force level and experienced small changes with various length of the sensors. The steel sensors were applied to measure the impact force of an electric detonator.

Estimation from Field Tests of the Excavation Efficiency of an Improved Hydraulic Rock Splitting System (현장실험을 통한 개선된 수압암반절개시스템의 굴착 효율성 평가)

  • Park, Jong Oh;Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.719-730
    • /
    • 2021
  • An improved packer and injection system was developed to improve the efficiency of excavation by hydraulic rock splitting by reducing vibration and noise. Field testing of the system found hydraulic fractures limited in expansion and extension due to the loss of injection pressure by leackage from the cracks, and then the single packer applied to injection hole allowed to produce a sufficient tensile displacement for rock excavation. Numerical analysis based on the field test data could explain the development of cracks in the field experiments.

Modeling of Cylinder Expansion Test Using JWL Equation of State (JWL 상태방정식을 활용한 실린더 팽창 실험 모델링)

  • Minju, Kim;Sangki, Kwon
    • Explosives and Blasting
    • /
    • v.41 no.1
    • /
    • pp.19-31
    • /
    • 2023
  • There are various types of explosives, and each explosive has different characteristics such as water resistance, energy required for detonation, and crushing power, so understanding the characteristics of explosives is important for safe use and performance improvement. Computer simulation is used indirectly along with various experiments to understand the characteristics of explosives, and a state equation is used to express the explosive detonation process through computer simulation. In this study, the explanation of JWL EOS, which is mainly used among the state equations of explosives, and the cylinder expansion experiment to calculate the coefficient of JWL EOS were implemented as ANSYS AUTODYN and compared and analyzed with the actual experimental results. As a result, an error rate of around 20% occurred, and it was found that the overall change pattern of pressure and energy was consistent with the previously published experimental results.

Full-Scale Blasting Experiment and Field Verification Research Using Shock-Reactive Smart Fluid Stemming Materials (고속충격 반응형 스마트유체 전색재료를 적용한 실 규모 발파실험 및 현장실증 연구)

  • Younghun, Ko;Seunghwan, Seo;Youngjun, Jeong;Sanglim, Noh;Sangho, Cho;Moonkyung, Chung
    • Explosives and Blasting
    • /
    • v.41 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • Stemming is a process applied to blast holes to prevent gases from escaping during detonation. A stemming material helps confine the explosive energy for longer and increases rock fragmentation. This study developed a stemming material based on a shear-thickening fluid (STF) that reacts to dynamic shock. Two blasting experiments were conducted to Field-verify the performance of the STF-based stemming material. In the first experiment, the pressure inside the blast hole was directly measured based on applying the stemming material. In the second field verification, tunnel blasting was performed, and the blasting results of sand stemming and, that of the STF-based stemming case were compared. The measurement results of the pressure in the blast hole showed that when the STF-based stemming material was applied, the pressure at the top of the blast hole was lower than in the sand stemming case, and the stemming ejection was also lower. The results of the field application verify that the excavation performance of the STF-based stemming case in the tunnel blasting was superior to that of the sand stemming case.

Effect of Ground Boundary Condition on Evaluation of Blast Resistance Performance of Precast Arch Structures (지반경계조건이 프리캐스트 아치구조물의 폭발저항성능 평가에 미치는 영향)

  • Lee, Jungwhee;Choi, Keunki;Kim, Dongseok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.287-296
    • /
    • 2019
  • In this study, the effect of ground boundary conditions on the evaluation of blast resistance performance of precast arch structures was evaluated by a numerical analysis method. Two types of boundary conditions, namely, fixed boundary conditions and a perfectly matched layer (PML) were applied to numerical models. Blast loads that were much higher than the design load of the target structure were applied to compare the effects of the boundary conditions. The distribution and path of the ground explosion pressure, structural displacement, fracture of concrete, stress of concrete, and reinforcing bars were compared according to the ground boundary condition settings. As a result, the reflecting pressure shock wave at the ground boundaries could be effectively eliminated using PML elements; furthermore, the displacement of the foundation was reduced. However, no distinct difference could be observed in the overall structural behavior including the fracture and stress of the concrete and rebar. Therefore, when blast simulations are performed in the design of protective structures, it is rational to apply the fixed boundary condition on the ground boundaries as conservative design results can be achieved with relatively short computation times.

Prediction of the Damage Zone Induced by Rock Blasting Using a Radial Crack Model (방사균열 모델을 적용한 암반 발파에 의한 손상 영역 예측)

  • Sim, Young-Jong;Cho, Gye-Chun;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.55-64
    • /
    • 2006
  • It is very Important to predict the damage zone of a rock mass induced by blasting for the excavation of an underground cavity such as a tunnel, as the damage zones incur mechanical and hydraulic instability of the rock mass potentially. Complicated blasting processes that can hinder the proper characterization of the damage zone can be effectively represented by two loading mechanisms. The first mechanism is the dynamic impulsive load-generating stress waves that radiate outwards immediately after detonation. This load creates a crushed annulus along with cracks around the blasthole. The second is the gas pressure that remains for an extended time after detonation. As the gas pressure reopens some arrested cracks and extends these, it contributes to the final structure of the damage zone induced by the blasting. This paper presents a simple method to evaluate the damage zone induced by gas pressure during rock blasting. The damage zone is characterized by analyzing crack propagations from the blasthole. To do this, a model of a blasthole with a number of radial cracks that are equal in length in a homogeneous infinite elastic plane is considered. In this model, crack propagation is simulated through the use of only two conditions: a crack propagation criterion and the mass conservation of the gas. The results show that the stress intensity factor of a crack decreases as the crack propagates from the blasthole, which determines the crack length. In addition, it was found that the blasthole pressure continues to decrease during crack propagation.