• Title/Summary/Keyword: 파쇄영역

Search Result 73, Processing Time 0.025 seconds

Size and Dispersion Characteristics of Silver Nanoparticles Prepared Using Liquid Phase Reduction Method (액상환원법으로 제조한 은 나노입자의 크기와 분산특성)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.10-16
    • /
    • 2016
  • This work investigates the size and dispersion characteristics of silver nanoparticles synthesized by a liquid phase reduction method using PAA. The experimental variables were the molecular weight and doses of the PAA, reducing agent, dispersant, and organic solvent (ethanol-acetone). UV-visible spectrophotometer results confirm the formation of the silver particles, and SEM indicates size in the nanometer range. As the ultrasonication time increases, there is a tendency toward smaller agglomerates of nanoparticles. The agglomerates were dispersed into 1-5 agglomerates of particles by ultrasonication for 3 hours or more. Relatively spherical nanoparticles were produced with a completely homogeneous dispersion and size of 49.56-85.75 nm by ultrasonication using BYK-192, a dispersant containing copolymer with a pigment affinic group. The average size of the silver nanoparticles was increased to 36.82, 50.66, and 56.06 nm with increasing molecular weight of PAA. Also, the size of the nanoparticles increased with the capping of PAA on the surfaces of the nanoparticles when increasing the amount of PAA. The addition of hydrazine as a reducing agent produced relatively small particles because many nuclei were created by the reduction reaction. The ethanol-acetone solvent helped with the regular arrangement of the silver nanoparticles.

Characteristics of the Horizontal Stress and the Possibility of Stress Induced Brittle Failure in Chuncheon-Yanggu Mountainous Region by the In-situ Stress Measurements (현장 측정에 의한 춘천-양구 산악지역 내 수평응력 분포와 취성파괴 가능성에 관한 연구)

  • Bae Seongho;Jeon Seokwon
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.157-167
    • /
    • 2005
  • Current initial rock stress state is one of the key factors required to evaluate the stability and failure around an excavated opening and its importance increases as the construction depth become deeper and the scale of the rock structure become larger. In this paper, the study was performed to evaluate the characteristics of the regional stress state at Chuncheon-Yanggu mountainous region, the East-North part of Kyeonggi Massif. Forty nine field stress measurements in 9 boreholes were conducted at the depth from 20 m to 290 m by hydraulic fracturing method. The fracturing tracing works were carried out by acoustic televiewer scanning. The study results revealed that the different intial rock stress states presented at different formation rock type and the excessive horizontal stress state with stress ratio(K) close to 3.0 was measured at the depth of 200 m and deeper in the intrusive unite body of the study area. The results from the investigation of excessive horizontal stress and its effect on failure mode showed that there exist several points where the localized excessive horizontal stresses are big enough to potentially induce brittle failures around the future openings greater than 100 m in depth within the granite body of the study area.

Cloning and Characterization of Xylanase 11B Gene from Paenibacillus woosongensis (Paenibacillus woosongensis의 Xylanase 11B 유전자 클로닝과 특성분석)

  • Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.2
    • /
    • pp.155-161
    • /
    • 2017
  • A gene coding for the xylanase predicted from the partial genomic sequence of Paenibacillus woosongensis was cloned by PCR amplification and sequenced completely. This xylanase gene, designated xyn11B, consisted of 1,071 nucleotides encoding a polypeptide of 356 amino acid residues. Based on the deduced amino acid sequence, Xyn11B was identified to be a modular enzyme, including a single carbohydrate-binding module besides the catalytic domain, and was highly homologous to xylanases belonging to glycosyl hydrolase family 11. The SignalP4.1 server predicted a stretch of 26 residues in the N-terminus to be the signal peptide. Using DEAE-Sepharose and Phenyl-Sepharose column chromatography, Xyn11B was partially purified from the cell-free extract of recombinant Escherichia coli carrying a copy of the P. woosongensis xyn11B gene. The partially purified Xyn11B protein showed maximal activity at $50^{\circ}C$ and pH 6.5. The enzyme was more active on arabinoxylan than on oat spelt xylan and birchwood xylan, whereas it did not exhibit activity towards carboxymethylcellulose, mannan, and para-nitrophenyl-${\beta}$-xylopyranoside. The activity of Xyn11B was slightly increased by $Ca^{2+}$ and $Mg^{2+}$, but was significantly inhibited by $Cu^{2+}$, $Ni^{2+}$, $Fe^{3+}$, and $Mn^{2+}$, and completely inhibited by SDS.

Molecular cloning and characterization of β-mannanase B from Cellulosimicrobium sp. YB-43 (Cellulosimicrobium sp. YB-43의 mannanase B 유전자 클로닝과 특성 분석)

  • Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.336-343
    • /
    • 2016
  • A mannanase gene was cloned into Escherichia coli from Cellulosimicrobium sp. YB-43, which had been found to produce two kinds of mannanase, and sequenced completely. This mannanase gene, designated manB, consisted of 1,284 nucleotides encoding a polypeptide of 427 amino acid residues. Based on the deduced amino acid sequence, the ManB was identified to be a modular enzyme including two carbohydrate binding domains besides the catalytic domain, which was highly homologous to mannanases belonging to the glycosyl hydrolase family 5. The N-terminal amino acid sequence of ManB, purified from a cell-free extract of the recombinant E. coli carrying a Cellulosimicrobium sp. YB-43 manB gene, has been determined as QGASAASDG, which was correctly corresponding to signal peptide predicted by SignalP4.1 server for Gram-negative bacteria. The purified ManB had a pH optimum for its activity at pH 6.5~7.0 and a temperature optimum at $55^{\circ}C$. The enzyme was active on locust bean gum (LBG), konjac and guar gum, while it did not exhibit activity towards carboxymethylcellulose, xylan, starch, and para-nitrophenyl-${\beta}$-mannopyranoside. The activity of enzyme was inhibited very slightly by $Mg^{2+}$, $K^+$, and $Na^+$, and significantly inhibited by $Cu^{2+}$, $Zn^{2+}$, $Mn^{2+}$, and SDS. The enzyme could hydrolyze mannooligosaccharides larger than mannobiose, which was the most predominant product resulting from the ManB hydrolysis for mannooligosaccharides and LBG.

APP Tail 1 (PAT1) Interacts with Kinesin Light Chains (KLCs) through the Tetratricopeptide Repeat (TPR) Domain (APP tail 1 (PAT1)과 kinesin light chains (KLCs)의 tetratricopeptide repeat (TPR) domain을 통한 결합)

  • Jang, Won Hee;Kim, Sang-Jin;Jeong, Young Joo;Jun, Hee Jae;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1608-1613
    • /
    • 2012
  • A conventional kinesin, KIF5/Kinesin-I, transports various cargoes along the microtubule through interaction between its light chain subunit and the cargoes. Kinesin light chains (KLCs) interact with many different cargoes using their tetratricopeptide repeat (TPR) domain, but the mechanism underlying recognition and binding of a specific cargo has not yet been completely elucidated. We used the yeast two-hybrid assay to identify proteins that interact with the TPR domain of KLC1. We found an interaction between the TPR domain of KLC1 and an amyloid precursor protein (APP)-binding protein PAT1 (protein interacting with APP tail 1). The yeast two-hybrid assay demonstrated that the TPR domain-containing region of KLC1 mediated binding to the C-terminal tail region of PAT1. PAT1 also bound to KLC2 but not to kinesin heavy chains (KIF5A, KIF5B, and KIF5C) in the yeast two-hybrid assay. These protein-protein interactions were also observed in the glutathione S-transferase (GST) pull-down assay and by co-immunoprecipitation. Anti-PAT1 antibody as well as anti-APP anti-body co-immunoprecipitated KLC and KHCs associated with PAT1 from mouse brain extracts. These results suggest that PAT1 could mediate interactions between Kinesin-I and APP containing vesicles.

Gene Cloning, Purification and Characterization of Xylanase 10A from Paenibacillus woosongensis in Escherichia coli (Paenibacillus woosongensis로부터 대장균에 Xylanase 10A의 유전자 클로닝과 정제 및 특성분석)

  • Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.158-166
    • /
    • 2020
  • A gene coding for the xylanase was cloned from Paenibacillus woosongensis, followed by determination of its complete nucleotide sequence. This xylanase gene, designated as xyn10A, consists of 1,446 nucleotides encoding a polypeptide of 481 amino acid residues. Based on the deduced amino acid sequence, Xyn10A was identified to be a modular enzyme composed of a catalytic domain highly homologous to the glycosyl hydrolase family 10 xylanase and a putative carbohydrate-binding module (CBM) in the C-terminus. By using DEAE-sepharose and phenyl-sepharose column chromatography, Xyn10A was purified from the cellfree extract of recombinant Escherichia coli carrying a P. woosongensis xyn10A gene. The N-terminal amino acid sequence of the purified Xyn10A was identified to exactly match the sequence immediately following the signal peptide predicted by the Signal5.0 server. The purified Xyn10A was a truncated protein of 33 kDa, suggesting the deletion of CBM in the C-terminus by intracellular hydrolysis. The purified enzyme had an optimum pH and temperature of 6.0 and 55-60℃, respectively, with the kinetic parameters Vmax and Km of 298.8 U/mg and 2.47 mg/ml, respectively, for oat spelt xylan. The enzyme was more active on arabinoxylan than on oat spelt xylan and birchood xylan with low activity for p-nitrophenyl-β-xylopyranoside. Xylanase activity was significantly inhibited by 5 mM Cu2+, Mn2+, and SDS, and was noticeably enhanced by K+, Ni2+, and Ca2+. The enzyme could hydrolyze xylooligosaccharides larger than xylobiose. The predominant products resulting from xylooligosaccharide hydrolysis were xylobiose and xylose.

Analysis on dynamic numerical model of subsea railway tunnel considering various ground and seismic conditions (다양한 지반 및 지진하중 조건을 고려한 해저철도 터널의 동적 수치모델 분석)

  • Changwon Kwak;Jeongjun Park;Mintaek Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.583-603
    • /
    • 2023
  • Recently, the advancement of mechanical tunnel boring machine (TBM) technology and the characteristics of subsea railway tunnels subjected to hydrostatic pressure have led to the widespread application of shield TBM methods in the design and construction of subsea railway tunnels. Subsea railway tunnels are exposed in a constant pore water pressure and are influenced by the amplification of seismic waves during earthquake. In particular, seismic loads acting on subsea railway tunnels under various ground conditions such as soft ground, soft soil-rock composite ground, and fractured zones can cause significant changes in tunnel displacement and stress, thereby affecting tunnel safety. Additionally, the dynamic response of the ground and tunnel varies based on seismic load parameters such as frequency characteristics, seismic waveform, and peak acceleration, adding complexity to the behavior of the ground-tunnel structure system. In this study, a finite difference method is employed to model the entire ground-tunnel structure system, considering hydrostatic pressure, for the investigation of dynamic behavior of subsea railway tunnel during earthquake. Since the key factors influencing the dynamic behavior during seismic events are ground conditions and seismic waves, six analysis cases are established based on virtual ground conditions: Case-1 with weathered soil, Case-2 with hard rock, Case-3 with a composite ground of soil and hard rock in the tunnel longitudinal direction, Case-4 with the tunnel passing through a narrow fault zone, Case-5 with a composite ground of soft soil and hard rock in the tunnel longitudinal direction, and Case-6 with the tunnel passing through a wide fractured zone. As a result, horizontal displacements due to earthquakes tend to increase with an increase in ground stiffness, however, the displacements tend to be restrained due to the confining effects of the ground and the rigid shield segments. On the contrary, peak compressive stress of segment significantly increases with weaker ground stiffness and the effects of displacement restrain contribute the increase of peak compressive stress of segment.

Undisturbed Sampler for Characterizing the Behaviour of Weathered Granite Residual Soils (화강풍화토의 거동 특성 규명을 위한 비교란 시료채취기 개발)

  • 정순용;이승래
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.13-24
    • /
    • 1997
  • In Korea, granite is abundant and occupies around two-thirds of the country's ground. Bven though weathered granite residual soils are widely distributed, undisturbed sampling of this soil is extremely difficult because of the particultate structure. This difficulty has kept away the researchers from investigating !he deformational characteristics of weathered granite residual soil. Thus, a special undisturbed sampling device was developed and undisturbed samples were prepared for triaxial compression (TX), resonant column(RC), and torsional shear (75) tests. Local deformation transducer (LDT) was fabricated for internal strain measurements during TX tests. Both undisturbed samples and statically compacted samples of same density were tested by using TX with LDT, RC, and 75 test equipments. The behaviour of statically compacted specimens was almost the same as that of undisturbed samples in the strain ranges below 1 percent. The stiffness and strength decreased with increasing degree of weathering. In case of undisturbed specimens, strains at failure are widely varied from 2 percent to 11 percent, and planes of failure are irrelevant to the angle of internal friction due to the inhomogeneous nature.

  • PDF

Analysis of Sinkhole Formation over Abandoned Mine using Active-Passive-Active Finite Elements (폐광지역에서의 싱크홀 발생 규명을 위한 Active-Passive-Active 유한요소 기법 연구)

  • Deb Debasis;Shin Hee-Soon;Choi Sung O.
    • Tunnel and Underground Space
    • /
    • v.14 no.6 s.53
    • /
    • pp.411-422
    • /
    • 2004
  • Sinkhole subsidence occurs over abandoned mine workings and can be detrimental to human lives, damage to properties and other surface structures. In this study, simulation of sinkhole development process is performed using special finite element procedure. Especially, creation of mine voids due to roof falls and generation of goaf from broken rocks are simulated using active-passive-active finite elements. An active or solid element can be made passive or void once the tensile failure criterion is satisfied in the specified sinkhole formation zone. Upon completion of sinkhole development process, these passive elements in again be made active to simulate goal region. Several finite element models are analyzed to evaluate the relationships between sinkhole formation with width of gallery. depth of mine, roof condition and bulking factor of roof rocks. This study demonstrates that the concept of passive elements in numerical analysis can be used effectively for analyzing sinkhole formation or roof fall phenomenon in general.

Development of a Data Integration Tool for Hydraulic Conductivity Map and Its Application (수리전도도맵 작성을 위한 자료병합 툴 개발과 적용)

  • Ryu, Dong-Woo;Park, Eui-Seup;Kenichi, Ando;Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.17 no.6
    • /
    • pp.493-502
    • /
    • 2007
  • Measurements of hydraulic conductivity are point or interval values, and are highly limited in their number. Meanwhile, results of geophysical prospecting can provide the information of spatial variation of geology, and abundant in number. In this study, it was aimed to develop a data integration tool for constructing a hydraulic conductivity map by integrating geophysical data and hydraulic conductivity measurements. The developed code employed a geostatistical optimization method, simulated annealing (SA), and consists of 4 distinct computation modules by which from exploratory data analysis to postprocessing of the simulation were processed. All these modules are equipped with Graphical User Interface (GUI). Validation of the developed code was evaluated in-situ in characterizing hydraulic characteristics of highly permeable fractured zone.