• Title/Summary/Keyword: 파쇄성

Search Result 683, Processing Time 0.023 seconds

Morphological Analysis of Hydraulically Stimulated Fractures by Deep-Learning Segmentation Method (딥러닝 기반 균열 추출 기법을 통한 수압 파쇄 균열 형상 분석)

  • Park, Jimin;Kim, Kwang Yeom ;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.8
    • /
    • pp.17-28
    • /
    • 2023
  • Laboratory-scale hydraulic fracturing experiments were conducted on granite specimens at various viscosities and injection rates of the fracturing fluid. A series of cross-sectional computed tomography (CT) images of fractured specimens was obtained via a three-dimensional X-ray CT imaging method. Pixel-level fracture segmentation of the CT images was conducted using a convolutional neural network (CNN)-based Nested U-Net model structure. Compared with traditional image processing methods, the CNN-based model showed a better performance in the extraction of thin and complex fractures. These extracted fractures extracted were reconstructed in three dimensions and morphologically analyzed based on their fracture volume, aperture, tortuosity, and surface roughness. The fracture volume and aperture increased with the increase in viscosity of the fracturing fluid, while the tortuosity and roughness of the fracture surface decreased. The findings also confirmed the anisotropic tortuosity and roughness of the fracture surface. In this study, a CNN-based model was used to perform accurate fracture segmentation, and quantitative analysis of hydraulic stimulated fractures was conducted successfully.

Numerical Study on the Structural Behavior Accorded by Pre-weakening Before Demolishing a Cylindrical Structure (원통형 구조물의 발파해체를 위한 사전 취약화에 따른 구조물의 안정에 관한 수치해석적 연구)

  • Park, Hoon;Suk, Chul-Gi;Kim, Seung-Kon
    • Explosives and Blasting
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • In this study, the structural behavior accorded by pre-weakening before demolishing a cylindrical structure was investigated to ensure structural stability using 3 dimensional applied element method (3D AEM). An opening angle of crushed area for the pre-weakening was changed to examine the displacement behavior of the cylindrical structure. This study shows that the crushing range for pre-weakness must be below 40% to void the collapse of the cylindrical silo structure.

Comparison of Fragmentation Performance of Two Different Blast Patterns (두 가지 발파 패턴의 파쇄 성과 비교)

  • Rai, Piyush;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.325-331
    • /
    • 2010
  • In the present research paper large scale blasting was conducted on two different firing patterns, namely, straight V type and skewed V type pattern on the same sandstone overburden bench with similar explosives. The post-blast fragmentation assessments were made by use of digital imaging technique. The total cycle time of 10 $m^3$ rope shovels was also recorded in the field. The results reveal improvements in the fragmentation and excavator performance results for the blasts fired on skewed V type pattern. The paper discusses the skewed V firing pattern and the reasons for its superior performance vis-$\grave{a}$-vis the straight V type pattern.

Quality Evaluation of Basalt Aggregates from JEJU Island (제주산 현무암의 콘크리트용 골재 사용을 위한 품질 특성 평가)

  • Jang, Myung-Houn;Choi, Hee-Bok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.5
    • /
    • pp.449-456
    • /
    • 2013
  • This study was carried out to assess the suitability in terms of the standards of material quality of basalt aggregates from JEJU Island as a source for concrete aggregate. Quality assessments on the basalt aggregates were performed to assess the soundness of coarse aggregates using sodium sulfate solution, aggregate crushing test, and Los Angeles abrasion test. In addition, XRD, XRF, porosity, and compressive and tensile strength tests were performed to analyze the chemical components and the mechanical properties. In general, the mechanical properties of basalt aggregates from some areas did not meet the Korea Standards (KS), but the levels of compressive and tensile strength were higher than those of granite, andesite, and sandstone of other regions.

Case Study about the Ground Characteristics Analysis of Tunnel Face Fault Fractured Zone (터널막장 단층파쇄대의 지반특성 분석에 대한 사례연구)

  • Min Kyoung-Nam;Lim Kwang-Su;Jang Chang-Sik;Lim Dae-Hwan
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.111-118
    • /
    • 2005
  • The area of investigation belongs to Okchon metamorphic zone and the fault fractured zone runs parallel to the tunnel direction. It causes the independent decline of tunnel face and the slackness of the tunnel surrounding base so, after all, the severe displacement has occurred within the tunnel. Accordingly, the TSP(Tunnel Seismic Prediction) survey has been performed to investigate the extent of fault fractured zone and to analize its characteristics. Also, we have analized the behavior causes by performing the tunnel face mapping and drilling investigation, and confirmed the position and scale of geological anomaly area and front fractured zone which influences tunnel excavation and supporting. Collected data analyzed ground layer condition through 3 dimensional modeling. Several variables included in the modeling were analyzed by geostastistics. The analysis of the modeling data shows that the belt of weathering by fault fractured zone is developing on the basis of the right side of tunnel and that is decreasing to the left side. The fault fractured zone was confirmed that it has strike, $N0\~5^{\circ}E$ dip NW, and it is consisted of large-scale fractured zone including several anomalies. The severe displacement in tunnel is probably caused by asymmetrical load that n generated by the crossing of discontinuity and the rock strength imbalance of tunnel's both side by fault fractured zone, and judge that need tunnel reinforcement method of grouting etc.

Comparison of Extraction Efficacy for Endoparasitic Nematodes Pratylenchus vulnus from Roots (내부기생성선충 Pratylenchus vulnus 분리 효율 비교)

  • Sungchan Huh;Namsook Park;Jaeyong Chun;Myoungseung Jeon;Heonil Kang;Insoo Choi
    • Korean Journal of Plant Resources
    • /
    • v.37 no.4
    • /
    • pp.314-320
    • /
    • 2024
  • To speed up the extract of endoparasitic nematodes from roots, four extraction methods with or without root-grinding were compared; 1) immersion, 2) immersion + Air, 3) Oostenbrink dish, and 4) Mistifier. The experiments were conducted for nine days by using perilla roots infested with Pratylenchus vulnus. Root-lesion nematodes continuously extracted from perilla roots during the experiments and as much as 3-10% in 9th days. The total number of nematodes extracted from 2 g of perilla root in nine days were varied among methods (379-1,824 nematodes); the most nematodes were extracted by root grinding + immersion + air (1,824) and the root-grinding + mistifier method (1,349) (p = 0.05). In the first two days of extraction, root-grinding + mistifier extracted the most nematodes (725 nematodes), followed by root-grinding + immersion + Air (555 nematodes), and root-grinding + Oostenbrink dish (421 nematodes). Root-grinding effected as much as 16-108% more nematodes extraction when compared to without root-grinding (p = 0.01).

Development of Improved Rock Bolt for Reinforcement of Fracture Zone in Slope and Tunnel (사면 및 터널에서의 암반 파쇄대 보강을 위한 개량형 록볼트 개발)

  • Kim, Soo-Lo;Kim, Jong-Tae;Park, Seong-Cheol;Kim, Tae-Heok;Kwon, Hyun-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.101-109
    • /
    • 2010
  • There are many slopes generally developed by excavation and cut slope with small steps on massive slopes of roads. Especially these cut slopes which excavating around fault fracture zone need a reinforcement technology in order to ensure safety. In the case of slope excavation, it is difficult to use the existing slope support at fracture zone because of geological characteristics. Especially the factor of safety decreases significantly due to the movement of blocks in bed rocks and the expansion of interspace of discontinuous planes in fractured zones caused by excavation. Thus an efficient reinforcement technique in accordance with geological properties of fracture zones needs to be developed because the existing slope support has a restricted application. Therefore it is necessary to develop the specialized rock bolt technique in order to ensure an efficient factor of safety for anomalous fracture zones in slopes and tunnels. The purpose of this study is to develop newly improved rock bolt to increase a supporting effect of the swellex bolt method used recently as a friction type in fracture zones.

A Study on Behaviour of Tunnel Considering the Location of Groundwater Leaching and Fault Fracture Zone under Tunnel Construction (지하수 용출과 단층파쇄 위치에 따른 터널 거동 연구)

  • Son, Yongmin;Kim, Nagyoung;Min, Kyungjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.37-43
    • /
    • 2015
  • Ground characteristics is important in tunnel structure utilizing the strength of underground. In the case of the fault fracture zone such as weak soil conditions exists in the tunnel section and groundwater leaching occurs at the same time, it happens to occur to excessive displacement or collapse of tunnel frequently. Fault fracture zone is an important factor that determines the direction of displacement and the collapse of the tunnel under construction. Behavior of fault fracture zone is determined depending on the size and orientation of the surface portion of the tunnel. If the groundwater occurs in the face of tunnel, groundwater causes displacement and collapse. And the collapse characteristics of tunnel is a major factor in determining that the time-dependent behavior. It is difficult to accurately predict groundwater leaching from the fault fracture zone in the numerical analysis method and analyze the interaction behavior of groundwater and fault fracture zone. Therefore numerical analysis method has limitations the analysis of ground water in the ground which the fault fracture zone and groundwater occurs at the same time. It is required to comprehensively predict the behavior of tunnel and case studies of tunnel construction. Thus, the location of fault fracture zone is an important factor that determines the direction of displacement and the collapse of the tunnel. In this study, behavior characteristics of the tunnel according to the location of the fault fracture was analyzed.

A Study on Improvement Effects on Fractured Rock Mass by Consolidation Grouting in Tunnel (터널 내 파쇄지반 개량을 위한 압밀그라우팅 성능 평가 연구)

  • 정교철;서용석
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.189-202
    • /
    • 2002
  • In this study we carried out the in situ test in order to explore the grouting effects of fracture zone on mechanical properties and permeability in tunnel. After consolidation grouting the rock mass averaged 2.30 in the modulus of deformation and 2.49 in the modulus of elasticity. The results obtained through this study are as follows. (1) With advance of the injection steps, the total cement take shows uniformity of the rock mass. (2) After consolidation grouting the improvement of permeability can be identified by reduction of Lugeon values. (3) Grouting injection can improve deformability and strength of rock mass. (4) More mechanical improvement appears for more deformable rock mass before grouting injection.

A Study on Permeability Variation by Aperture in the Single Discontinuity Considering Pneumatic Fracturing (공압파쇄를 고려한 단일불연속면에서의 간극에 따른 투수성 변화에 대한 연구)

  • 정교철;김기종;부성안;서용석
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.151-166
    • /
    • 2002
  • Groundwater development as a means of acquiring subsidiary water resource is very important for the persistent security of water resource. Nowadays, pneumatic fracturing technology which was developed in the advanced countries is applied for increasing pumping rate and eliminating contaminants. This study gives an experimental data to clarify permeability characteristics of the single discontinuity which is newly developed or increased in aperture by the pneumatic fracturing or damage propagation of the natural barrier for the nuclear waste disposal. On the basis of understanding the relationship between permeability and hydraulic aperture the result could apply as one of the basic data for researches concerned with increasing pumping rate and eliminating contaminants. Hydraulic aperture is decreased exponentially with increasing confining pressure and proportioned to permeability in the same confining pressure. Especially, with the increasing aperture permeability of coarse- and medium- grained granite shows the more rapid increasing than that of fine- grained granite.