• Title/Summary/Keyword: 파면전파

Search Result 28, Processing Time 0.025 seconds

Calculation of the Arrival Angles of a Wave by use of Wavefront Analysis (파면 해석을 이용한 전파 도래각의 계산)

  • Kim, Jong-Ho;Jo, Jin-Ho;Oh, Seung-Hyeup;Park, Dong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.101-104
    • /
    • 1987
  • The problem considered is that of calculating the angles of arrival of a multimoded signal at an antenna array from simultaneous measurements of the amplitude and the phase of the signal in each element of the array. The method of wavefront analysis 15 applied to a 4-element direction finder of the Adcock type. A simulated problem is constructed with the aid of suitable computer programs developed here.

  • PDF

Analysis of Fatigue Life and Failure of High-Speed Rotating Cylindrical Vessel with Holes (구멍이 있는 고속 회전 원통용기의 파손 및 수명 해석)

  • Lee, Ouk-Sub;Kim, Hong-Min;Choi, Hye-Bin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.439-446
    • /
    • 2010
  • Fracture mechanics is used for the detailed analysis of the failure of high-speed rotating cylindrical vessels. The general procedure for the analysis of fatigue life and failure used in this study is summarized; the initial material properties are also described. The results of the theoretical stress analysis are compared to the observed magnitude of the stress under the operational condition. The fracture-surface configurations observed under both optical and scanning electron microscopes are used to investigate the progress of fatigue crack propagation. Fatigue life estimates obtained by using the Paris model are compared to the actual service life of the high-speed rotating pressure vessel.

The Group Velocity of Lamb Wave Generated by the one Source in Unidirectional Laminated Composite Plates (일방향 적층 복합재료 판에서 한 음원에서 발생된 램파의 군속도)

  • Lee Jeong-Ki;Rhee Sang-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.107-112
    • /
    • 2006
  • The elastic waves in a plate are dispersive waves due to the characteristics of Lamb waves. However, S0 symmetric mode is less dispersive in the frequency region below the first cut-off frequency. The wave Propagation velocities vary with the direction in anisotropic plates such as Carbon Fiber Reinforced Plastic (CFRP) Plates. The wave vector direction and energy flow vector direction are same in isotropic plates. However, the wave vector direction same as the phase velocity direction is not in accordance with the energy flow direction same as the group velocity direction in anisotropic plates. In this study. the dispersion curves or the phase velocity from anti-symmetric and symmetric Lamb wave dispersion equation are calculated for unidirectional laminated composite plate. Slowness surface is sketched using phase velocity under the first cut-off frequency. The direction and magnitude of group velocity are corrected with this slowness surface. The measured group velocities are in good agreement with the corrected group velocity curve except near the fiber direction zone which is called the cusp region.

Macro and Microscopic Investigation on Fracture Specimen of Alloy 617 Base Metal and Weldment in Low Cycle Fatigue Regime (저사이클 피로 영역에서의 Alloy 617 모재와 용접재의 파괴 시험편에 대한 거시적 및 미시적 관찰)

  • Kim, Seon Jin;Dewa, Rando Tungga;Kim, Woo Gon;Kim, Eung Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.565-571
    • /
    • 2016
  • This paper investigates macro- and microscopic fractography performed on fracture specimens from low cycle fatigue (LCF) testings through an Alloy 617 base metal and weldments. The weldment specimens were taken from gas tungsten arc welding (GTAW) pad of Alloy 617. The aim of the present study is to investigate the macro- and microscopic aspects of the low cycle fatigue fracture mode and mechanism of Alloy 617 base metal and GTAWed weldment specimens. Fully axial total strain controlled fatigue tests were conducted at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. Macroscopic fracture surfaces of Alloy 617 base metal specimens showed a flat type normal to the fatigue loading direction, whereas the GTAWed weldment specimens were of a shear/star type. The fracture surfaces of both the base metal and weldment specimens revealed obvious fatigue striations at the crack propagation regime. In addition, the fatigue crack mechanism of the base metal showed a transgranular normal to fatigue loading direction; however, the GTAWed weldment specimens showed a transgranular at approximately $45^{\circ}$ to the fatigue loading direction.

Microstructural Aspects of Crack Propagation in All-Ceramic Materials (전부도재관용 도재의 미시적 균열전파 양상)

  • 김효성;최규형;정회웅;원대희;이민호;배태성
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.433-441
    • /
    • 1998
  • This study was performed to evaluate the effects of surface flaw on the fracture of all-ceramic materials. A feldspathic porce lain of VMK68, a cashable ceramic of IPS-Empress, and an alumina-glass composite of In-Ceram were used. Specimens were prepared as 12$\times$3$\times$1mm in dimensions, and a Vickers-produced indentation crack was made at the center of the tensile surface. Test specimens were immersed in dlstilled water and In oil, which were broken under a crosshead speed of 0.05 mm/min by 3-point bend test at 37$^{\circ}C$. The characteristic patterns of Vickers indentation and fracture surfaces were examined by an optical microscope and a scanning electron microscope. The fracture surfaces of the VMK68 and the IPS-Empress showed a median crack pattern at the fracture origin and indicated a tendency to cleavage hackle. The fracture surface of the alumina-glass composite, In-Ceram, showed a Palmqvist crack pattern at the fracture origin and indicated a tendency of toughening by the frictional Interlocking between the microstructurally rough fracture surfaces.

  • PDF

Transition from Cycle-Dependent to Time-Dependent Fatigue Crack Propagation at Creep Temperature of SUS 304 Steel (SUS 304鋼 의 크리이프 溫度領域 에 관한 時間依存型 및 사이클依存型 疲勞크랙 傳播 의 遷移)

  • 유헌일;주원식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.539-547
    • /
    • 1985
  • The low-cycle fatigue crack growth behavior of SUS 304 Stainless steel was investigated at 650.deg. C by the nonlinear fracture mechanics. Crack Propagation can be separated in to cycle-dependent and time-dependent, the former is correlated with .DELTA. $J_{f}$ , J-intergral range and the latter is correlated with J', modified J integral. Transition from cycle-dependent to time-dependent crack growth was successfully predicted using the .betha. hypothesis, which was proposed by the authors on the basis of an analysis on the interaction of elastic and creep strain. To investigate the reliability of .betha.-hypothesis, experimenting by the change of stress-level, stress rate and frequency, following conclusions were obtained. (1) High temperature fatigue crack propagation was separated into cycle-dependent and time-dependent. (2) Transition of crack propagation was predicted by .DELTA. $J_{c}$/.DELTA.$_{f}$ or .betha. (3) Lower limit in cycle-dependent crack propagation was obtained..

Mission-Oriented Conceptional Design of the Cube Satellite CNU Laser Unity Bus (CLUB) for Ground-Space Laser Research (지상-우주 레이저 연구를 위한 큐브위성 CLUB(CNU Laser Unity Bus)의 임무 중심 개념설계)

  • Seok-Min Song;Ho Sub Song;Chae-Ryeong Kim;Young-In Kang;Yang-Ha Ju;Mansoo Choi;Hyung-Chul Lim;Yu Yi
    • Journal of Space Technology and Applications
    • /
    • v.4 no.1
    • /
    • pp.48-61
    • /
    • 2024
  • In this paper, we introduce the concept of the cube satellite Chungnam National University Laser Unity Bus (CLUB), which can provide an integrated infrastructure for various ground-space laser applications. With the advent of the new space era, the rapid expansion of space utilization has begun to reveal the limitations of conventional radio frequencies. As space missions diversify, lasers are garnering attention as a viable alternative. Between ground and space, lasers are applied in various fields including satellite laser ranging (SLR), laser weapons, and laser communication. However, laser used between the ground and space are significantly influenced by the Earth's atmosphere. Consequently, understanding the atmospheric effects on laser propagation is crucial. In particular, atmospheric turbulence, which refracts and distorts laser beams, intensifies closer to the Earth's surface, exerting a greater impact on the uplink than on the downlink. While downlink verification is facilitated by ground detection, verifying the uplink poses challenges due to the necessity of space-based detection. In response to these challenges, we propose the idea of cube satellite as a means to enhance understanding and verification of laser propagation in the uplink. Additionally, we present the results of conceptual design by analyzing requirements, focusing on mission design of the CLUB cube satellite, following the stages of systems engineering for systematic cube satellite development.

A Study on Prediction of Stress Intensity Factor and Fatigue Crack Growth Behavior Using the X-ray Diffraction Technique (X-선 회절을 이용한 피로균열진전거동과 응력확대계수 예측에 관한 연구)

  • Lim, Man-Bae;Boo, Myung-Hawn;Kong, Yu-Sik;Yoon, Han-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.673-680
    • /
    • 2003
  • This study verified the relationship between fracture mechanics parameters(ΔK, ΔK$\sub$eff/, K$\sub$max/) and X-ray parameters (${\alpha}$$\sub$r/, B) for SG365 steel at elevated temperature up to 300$^{\circ}C$. The fatigue crack propagation test were carried out and X-ray diffraction technique according to crack length direction was applied to fatigue fractured surface. The residual stress on the fracture surface was found to increase low ΔK region, reach to a maximum value at a certain value of K$\sub$max/ or ΔK and then decrease. Residual stress were independent on stress ratio by arrangement of ΔK and half value breadth were independent by the arrangement of K$\sub$max/. The equation of ${\alpha}$$\sub$r/ - ΔK was established by the experimental data. Therefore, tincture mechanics parameters could be estimated by the measurement of X-ray parameters.

A Study on the X-ray Diffraction Analysis and the Fatigue Crack Growth Behavior for the Gas Piping Material (가스배관재의 X-선 회절분석과 피로균열거동에 관한 연구)

  • 임만배;윤한기;박원조
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.54-58
    • /
    • 2002
  • This study investigates a relationship between fracture mechanics parameters (Stress Intensity Factor Range: ΔK, Maximum Stress Intensity Factor; Kmax) and X-ray parameters (residual stress:$\sigma$r half-value breadth: B) for SG365 steel at elevated temperature up to 30$0^{\circ}C$. The fatigue crack propagation test were carried out and X-ray diffraction technique according to the direction of crack length was applied to fatigue fractured surface. The residual stress on the fracture surface was found to increase at low ΔK region, to reach a maximum value at a certain value of Kmax or ΔK and then to decrease. Residual stress was independent of stress ratio by arrangement of ΔK and half value breadth were independent of the arrangement of Kmax. The equation of $\sigma$r-ΔK was established by the experimental data. therefore, fracture mechanics parameters could be estimated by the measurement of X-ray parameters.

A study on prediction of stress intensity factor and fatigue crack growth behavior using the X-ray diffraction technique (X-선 회절을 이용한 피로균열진전거동과 응력확대계수 예측에 관한 연구)

  • Lim, Man-Bae;Kong, Yu-Sik;Boo, Myung-Hawn;Cha, Gee-Jun;Yoon, Han-Ki
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.317-323
    • /
    • 2001
  • This study verified the relationship between fracture mechanics parameters$({\Delta}K,\;{\Delta}K_{eff},\;K_{max})$ and X-ray parameters $(\sigma_r,\;B)$ for SG365 steel at elevated temperature up to $300^{\circ}C$. The fatigue crack propagation test were carried out and X-ray diffraction technique according to crack length direction was applied to fatigue fractured surface. The residual stress on the fracture surface was found to increase low ${\Delta}K$ region, reach to a maximum value at a certain value of $K_{max}\;or\;{\Delta}K$ and then decrease. Residual stress were independent on stress ratio by arrangement of ${\Delta}K$ and half value breadth were independent by the arrangement of $K_{max}$. The equation of $\sigma_r-{\Delta}K$ was established by the experimental data. Therefore, fracture mechanics parameters could be estimated by the measurement of X-ray parameters.

  • PDF