• Title/Summary/Keyword: 파면복원

Search Result 7, Processing Time 0.024 seconds

A Study on the Dynamic Range Expansion of the Shack-Hartmann Wavefront Sensor using Image Processing (영상처리 기법을 이용한 샥-하트만 파면 센서의 측정범위 확장에 대한 연구)

  • Kim, Min-Seok;Kim, Ji-Yeon;Uhm, Tae-Kyung;Youn, Sung-Kie;Lee, Jun-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.375-382
    • /
    • 2007
  • The Shack-Hartmann wavefront sensor is composed of a lenslet array generating the spot images from which local slope is calculated and overall wavefront is measured. Generally the principle of wavefront reconstruction is that the spot centroid of each lenslet array is calculated from pixel intensity values in its subaperture, and then overall wavefront is reconstructed by the local slope of the wavefront obtained by deviations from reference positions. Hence the spot image of each lenslet array has to remain in its subaperture for exact measurement of the wavefront. However the spot of each lenslet array deviates from its subaperture area when a wavefront with large local slopes enters the Shack-Hartmann sensor. In this research, we propose a spot image searching method that finds the area of each measured spot image flexibly and determines the centroid of each spot in its area Also the algorithms that match these centroids to their reference points unequivocally, even if some of them are situated off the allocated subaperture, are proposed. Finally we verify the proposed algorithm with the test of a defocus measurement through experimental setup for the Shack-Hartmann wavefront sensor. It has been shown that the proposed algorithm can expand the dynamic range without additional devices.

The Development of High Speed Wavefront Sensor for Diagnosis of Beam Quality of He-Ne Laser (He-Ne 레이저 빔 품질 진단용 고속파면센서 개발)

  • Lee, Young-Cheol;Lee, Jae-Il;Kang, Eung-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.160-167
    • /
    • 2007
  • In this paper, we presented the development results of high speed wavefront sensor which is used in diagnosing the beam quality of He-Ne laser for adaptive optics system. The beam quality information of laser in AO system is necessarily required for diagnosing the optical components or correcting the distorted wavefront afterward. According to system requirements, normally, it is requested that there are high precision of measurement and real time processing speed. The developed wavefront sensor in this paper achieved maximum 30Hz of measurement rate and ${\lambda}/20(\;{@}\;{\lambda}=0.6328{\mu}m)$ of measurement precision in RMS. We also applied the developed into an experimental adaptive system and verified the performance of it by correcting the aberrated wavefront with a rate of 30Hz and $\lambda$/20 precision using the combination of the developed and PID control algorithm.

A Study on the Improvement of Wavefront Sensing Accuracy for Shack-Hartmann Sensors (Shack-Hartmann 센서를 이용한 파면측정의 정확도 향상에 관한 연구)

  • Roh, Kyung-Wan;Uhm, Tae-Kyoung;Kim, Ji-Yeon;Park, Sang-Hoon;Youn, Sung-Kie;Lee, Jun-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.383-390
    • /
    • 2006
  • The SharkHartmann wavefront sensors are the most popular devices to measure wavefront in the field of adaptive optics. The Shack-Hartmann sensors measure the centroids of spot irradiance distribution formed by each corresponding micro-lens. The centroids are linearly proportional to the local mean slopes of the wavefront defined within the corresponding sub-aperture. The wavefront is then reconstructed from the evaluated local mean slopes. The uncertainty of the Shack-Hartmann sensor is caused by various factors including the detector noise, the limited size of the detector, the magnitude and profile of spot irradiance distribution, etc. This paper investigates the noise propagation in two major centroid evaluation algorithms through computer simulation; 1st order moments of the irradiance algorithms i.e. center of gravity algorithm, and correlation algorithm. First, the center of gravity algorithm is shown to have relatively large dependence on the magnitudes of noises and the shape & size of irradiance sidelobes, whose effects are also shown to be minimized by optimal thresholding. Second, the correlation algorithm is shown to be robust over those effects, while its measurement accuracy is vulnerable to the size variation of the reference spot. The investigation is finally confirmed by experimental measurements of defocus wavefront aberrations using a Shack-Hartmann sensor using those two algorithms.

폴리곤기반 CGH 생성에서의 실용적인 준해석적 텍스쳐링

  • O, Seung-Taek;Yeom, Han-Ju;Jeon, Sang-Hun;Park, Jung-Gi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.567-570
    • /
    • 2020
  • 본 논문에서는 폴리곤기반 CGH 생성에서 텍스쳐 적용을 위한 준해석적 기법을 소개한다. 각각의 단위 폴리곤의 근방에서 폴리곤에 의해 회절되는 파면을 서로 독립인 기하학적 필드와 텍스쳐 필드의 곱으로 표현한다. 기하학적 필드는 기존의 해석적 방법을 적용하고 텍스쳐필드는 FFT 기반의 비해석적 방법을 적용하여 폴리곤 근방에서의 각스펙트럼을 얻고 이들의 FFT기반 합성곱을 통해 폴리곤 근방의 텍스쳐가 포함된 폴리곤의 회절 파면을 얻고 이를 홀로그램 평면까지 진행시켜 최종 홀로그램을 생성한다. 본 방법은 기하학적 필드에 해석적 방법을 적용하여 FFT기반의 비해석적 방법에 비해 복원 영상의 품질이 우수하며 CGH 생성속도 측면에서는 텍스쳐가 없는 경우의 해석적 방법과 유사하며 텍스쳐 이미지의 해상도에 상관없이 홀로그램 해상도에만 의존하는 장점이 있다.

  • PDF

Generation and reconstruction of holographic based on GUI and data stream structure (GUI/데이터 스트림 구조 기반 홀로그램 생성 및 복원)

  • Lee, Dong-Hee;Doung, Chankhihort;Ryu, Ga-Ae;Yoo, Kwan-Hee
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.467-468
    • /
    • 2016
  • 홀로(holo)란 그리스 어로 전체를, 그램(gram)은 그리스 어로 '메시지' 또는 '정보'란 뜻으로, '완전한 사진'이란 의미의 홀로그램은 어떤 대상 물체의 3차원 입체상을 재생한다. 이러한 기술을 컴퓨터로 물체의 파면을 계산하여 디지털적으로 홀로그램을 제작 및 복원하는 기술을 소개한다. 또한 홀로그램 데이터 포맷을 정의하고 C#기반의 폼으로 제작하여 사용자가 이미지, Point Cloud, Mesh Cloud를 이용하여 편리하게 생성 및 복원을 할 수 있는 시스템 방법을 제안한다.

  • PDF

Aberration Retrieval Algorithm of Optical Pickups Using the Extended Nijboer-Zernike Approach (확장된 네이보어-제르니케 방법에 의한 광픽업의 파면수차 복원 알고리즘)

  • Jun, Jae-Chul;Chung, Ki-Soo;Lee, Gun-Kee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.32-40
    • /
    • 2010
  • In this work, the method of acquiring the pupil function of optical system is proposed. The wavefront aberration and the intensity distribution of pupil can be analysed with the pupil function. This system can be adopted to the manufacturing line of optical pickup directly and also has good performance to analysing various property of optical instrument. It is one kind of inverse problem to get pupil functions by 3D beam data. The extended Nijboer-Zernike(ENZ) approach recently proposed by Netherlands research group is adopted to accompany to solve these inverse problem. The ENZ approach is one of a aberration retrieval method for which numerous approaches are available. But this approach is new in the sense that it use the highly efficient representation of pupil functions by means of their Zernike coefficients. These coefficients are estimated by using matching procedure in the focal region the theoretical 3D intensity distribution and measured 3D intensity distribution. The algorithm that can be applied more general circumstance such as high-numerical aperture instrument is developed by modifying original ENZ approach. By these scheme, MS windows based GUI program is developed and the good performance is verified with generated 3D beam data.

Real Time Temperature Distribution Measurement of a Microheater by Using Off-Axis Digital Holography (Off-Axis 디지털홀로그래피를 이용한 마이크로히터의 실시간 온도분포측정)

  • Tserendolgor, D.;Baek, Byung-Joon;Kim, Dae-Suk
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.106-113
    • /
    • 2011
  • We describe a single shot off-axis digital holography based on a Mach-Zehnder interferometic scheme for measuring temperature distribution of a microheater. The proposed scheme has the capability of reconstructing object phase image which is dependent of the temperature distribution in real time. Experimental results shows that there is a moderate linear relationship between the measured phase and temperature in the range of $20^{\circ}C$ to $60^{\circ}C$. We expect that the proposed system can provide a very reliable and fast solution in various surface temperature distribution measurement applications.