• Title/Summary/Keyword: 파력 에너지

Search Result 182, Processing Time 0.032 seconds

An Experimental Study for Predicting the Electric Power of the Coaxial Accelerator Type Wave Power Generator (동축 가속형 파력 발전장치의 전력량 예측을 위한 실험 연구)

  • Chung, Jaeho;Shin, Dong Min;Kim, Yuncheol;Moon, Byung Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.19-24
    • /
    • 2020
  • The interest in renewable energy is increasing due to the depletion of fossil fuels. In particular, active research on wave power, which is highly predictable and abundant, is being conducted. The coaxial accelerator-type wave power generator used in this study was designed to improve the power generation efficiency by converting bidirectional linear motion into a rotational force. In an offshore engineering basin, waves were generated, and case tests were performed according to the wave period and wave height. The experimental results were verified by the theoretical method related to the frequency response, and the overall trend was confirmed to be consistent. These results are expected to be useful in estimating the power of wave generators and designing parameters to improve the efficiency of wave energy in the design stage before manufacturing. In addition, the manufacturer can predict the wave energy efficiency of wave generators, which can reduce the development time and cost by preventing trial and error processes.

Computational Analysis of Parabolic Overtopping Wave Energy Convertor (포물선형 월류파력발전장치에 대한 수치해석)

  • Liu, Zhen;Hyun, Beom-Soo;Jin, Ji-Yuan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.273-278
    • /
    • 2009
  • Overtopping Wave Energy Convertor (OWEC) is an offshore wave energy convertor for collecting the overtopping waves and converting the water pressure head into electric power through the hydro turbines installed in the vertical duct which is fixed in the sea bed. The numerical wave tank based on the commercial computational fluid dynamics code Fluent is established for the corresponding analysis. Several incident wave conditions and shape parameters of the overtopping device are calculated. The straight line type and parabolic type of the sloping arm are compared in the optimal designing investigation of the overtopping characteristics and discharge for OWEC device. The numerical results demonstrate that the parabolic sloping arm is available for wave running up and the overtopping discharge increasing.

  • PDF

Experimental Study for Overtopping Performance and Control System of Overtopping Wave Energy Convertor (월류 파력 발전 구조물 통합 축소 모형 시험을 통한 월류 성능 및 제어 시스템에 관한 실험적 연구)

  • Park, J.Y.;Shin, S.H.;Hong, K.Y.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • Wave overtopping reef system with guide vanes convert incident wave energy on the reef type structures into electric power. Previous studies decided shape parameters likes slope, height of the sloping arm and shape of guide vane. In this paper, using these shape parameters produce 1/7 scale model and construct integration scale model system combining water pressure head turbine, power generation, power control, operating control and monitoring system. In these systems, we measure the overtopping and power generation with different wave heights and periods and compare the results with the previous studies. This was confirmed designed overtopping and power generation, then we suggest efficient control system.

A study of motion characteristics along the connection methods between the floating body and the wave energy convertor (파력발전기의 가동부유체와 본체 사이의 연결방식에 따른 운동특성 연구)

  • Kim, Sung-Soo;Lee, Jong-Hyun;Kang, Dong-Hoon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.10a
    • /
    • pp.17-18
    • /
    • 2014
  • Wave energy generation system is sorted as oscillating water chamber type, over topping device type and wave activating body type. The wave activating body type converts from wave energy to kinetic of the machine one and the power generation amount increases while the motion of a activating body increases. In this paper the wave energy convertor consists of a main body which has a generation system and the activating body. They are connected by a bar type bridge. The twisting moment and angular velocity at a shaft of convertor are calculated when various condition of the incident wave, a diversity of connection methods between the main body and the activating body. It can be used as basic idea for determining the design of wave activating body type convertor.

  • PDF

Oscillating Flow Field Analysis as Shape of Air Chamber in OWC-type Wave Energy Conversion (OWC형 파력발전장치 공기실 형상에 따른 왕복유동장 해석)

  • Hong, Key-Yong;Shin, Seung-Ho;Hyun, Beom-Soo;Ryu, Hwang-Jin;Park, Soon-Jong;Moon, Jae-Seung
    • Journal of Navigation and Port Research
    • /
    • v.31 no.1 s.117
    • /
    • pp.29-33
    • /
    • 2007
  • An OWC-type Wave Energy Conversion passes through 3 steps energy conversion process. This paper deal with the internal oscillating flow and effect of shape of air chamber and duct at setting place of turbine by numerical analysis using commercial CFD code, FLUENT. Air chamber and duct in OWC-type wave energy conversion are adopting sudden expanded and contracted form for high-efficiency. So, whole oscillating flow from OWC-type chamber to outlet duct through duct was solved by steady and unsteady analysis in order that flow efficiency of air chamber and duct was made better.

A Study on Entrance Section of Hybrid Wave Power Generation System (하이브리드형 파력발전시스템의 유입구 형상 연구)

  • Oh, Jin-Seok;Jang, Jae-Hee
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.597-601
    • /
    • 2013
  • Recently, many studies about the wave power generation system for the marine structure as the hybrid form in linked with the original features have been made of. Of these, the wave power generation system using oscillating water column(OWC) has function to convert wave energy to electrical energy with original function of the break water structure. In this type of generation system, it is important to make the flow of sea water as much as possible without loss. Output characteristics of wave power generation system depending on entrance section were described in the paper. Also, flow quantity changing with entrance section, velocity of sea water and output of wells turbine were measured by simulating OWC wells turbine model in break water, one of the general marine structure. Finally, entrance section was suggested to enhance the energy conversion efficiency based on the results of simulation.

Interaction Analysis on Deployment of Multiple Wave Energy Converters in a Floating Hybrid Power Generation Platform (부유식 복합발전 플랫폼내의 다수 파력발전기 배치를 위한 상호작용 해석)

  • Lee, Hyebin;Cho, Il Hyoung;Kim, Kyong-Hwan;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.3
    • /
    • pp.185-193
    • /
    • 2016
  • In this study, the present deployment of the multiple wave energy converters (WECs) in a floating wind-wave hybrid power generation platform was estimated considering the interaction effect among WEC buoys. The interaction processes of multiple buoys were very complex, since scattered and radiated waves from each buoy affected the others in the array. The interaction analysis of the diffraction and radiation problem by the array of WECs was applied by matched eigenfunction expansion method (MEEM). The analytical solutions were compared with the results of numerical calculation based on WAMIT. The overall performance of 24 WECs installed in the hybrid power generation platform was evaluated by the q-factor representing the interaction effect among buoys.

Topology Optimization Application for Initial Platform Design of 10 MW Grade Floating Type Wave-wind Hybrid Power Generation System (10MW급 부유식 파력-풍력 복합발전 시스템 플랫폼 초기설계를 위한 위상최적화 응용)

  • Song, Chang Yong;Lee, Kangsu;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.3
    • /
    • pp.194-202
    • /
    • 2016
  • This study aims to review a topology optimization based on finite element analysis (FEA) for conceptual design of platform in the 10MW class floating type wave-wind hybrid power generation system (WHPGS). Two topology optimization theories, density method (DM) and homogenization design method (HDM) were used to check which one is more effective for a simplified structural design problem prior to the topology optimization of platform of WHPGS. From the results of the simplified design problem, the HDM was applied to the topology optimization of platform of WHPGS. For the conceptual platform design of WHPGS, FEA model was created and then the structural analysis was performed considering offshore environmental loads at installation site. Hydrodynamics analysis was carried out to calculate pressure on platform and tension forces in mooring lines induced from the offshore environmental loads such as design wave and current. Loading conditions for the structural analysis included the analysis results from the hydrodynamic analysis and the weights of WHPGS. Boundary condition was realized using inertia relief method. The topology optimization of WHPGS platform was performed using the HDM, and then the conceptual arrangement of main structural members was suggested. From the results, it was confirmed that the topology optimization might be a useful tool to design the conceptual arrangement of main structural members for a newly developed offshore structure such as the floating type WHPGS.

Development of Maximum Power Point Tracking Algorithm for AWS-type Power System (AWS형 파력발전 시스템의 최대전력추종 알고리즘 개발)

  • Sung, Hwa-Chang;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1836-1837
    • /
    • 2011
  • 본 논문에서는 AWS형 파력발전 시스템의 최대전력 추종(Maximum Power Point Tracking: MPPT)을 위한 알고리즘 개발 기법에 대한 제안을 하고자 한다. AWS형 파력발전 시스템은 2004년 포르투갈에서 제안된 파도에너지 변환장치로, 해저에 위치하여 전력을 생산하는 특징을 지니고 있다. 파도의 상하 운동에 맞추어 AWS의 주요 부위인 본체가 움직이기 때문에 전력 생산량이 일정치 못하며, 특히 계절 및 환경에 따른 영향을 많이 받게 된다. 이러한 문제점을 해결하기 위한 방법으로, 신재생 발전에서 많이 활용되는 MPPT 제어 기법을 제안하게 된다. 제안된 기법의 활용을 통해 AWS형 파력발전 시스템의 전력 생산성 향상 및 전력 안정도에 대한 연구를 수행하게 된다.

  • PDF