• Title/Summary/Keyword: 파랑 산란

Search Result 308, Processing Time 0.036 seconds

Electromagnetic Scattering by a Two-Dimensional Periodic Array of Small Resonant Apertures (소형 공진 개구의 2차원 주기적 배열에 의한 전자파 산란)

  • Ko, Ji-Hwan;Lee, Jong-Ig;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.320-326
    • /
    • 2011
  • Comparative study on the total transmission(zero reflection) has been done between two FSS structures which are coqmposed of the resonant aperture and the nonresonant aperture. It has been found that, the FSS of the resonant aperture has much larger ratio ${\lambda}$/T of wavelength ${\lambda}$ to array periodicity T than that of the FSS of the nonresonant aperture for the total transmission(or zero reflection). Also the operating frequency can be made to be significantly reduced by using such a resonant structure. This physical situation is thought to be similar to that of EOT(Extraordinary Optical Transmission) phenomenon, in optics area.

Polar-Format-Processing-Based Moving Target Imaging in MIMO Radar Environment (MIMO 레이다 환경에서 Polar Format Processing 기반 이동표적 이미징)

  • Choi, Sang-Hyun;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.124-131
    • /
    • 2019
  • This study presents an imaging algorithm that can provide an image of a moving target in a multiple-input-multiple-output radar environment where multiple transmitting and receiving radars are fixed on the ground. The proposed algorithm, which is based on polar format processing using plane wave approximation, is shown to provide an unaliased image by using multiple transmitting radars even when the distances between the receiving radars are relatively large. We derive the conditions necessary to deploy the transmitting radars by which the resolution of the reconstructed image can be improved, while simultaneously reducing aliasing artifacts. Moreover, we offer a means of separating out each transmitting radar target echo. Finally, the performance of the proposed system is verified through a simulation.

Resonance Scattering Characteristics of Multi-layered Dielectric Gratings under Conical Incidence (원추형 입사에서 다층 유전체 격자구조의 공진 산란특성)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.123-128
    • /
    • 2022
  • Applying rigorous modal transmission-line theory (MTLT), the properties of resonant diffraction gratings under conical light incidence is investigated. The mode vectors pertinent to resonant diffraction under conical mounting vary less with incident angle than those associated with diffraction gratings in classical mounting. Furthermore, as the evanescent diffracted waves drive the leaky modes responsible for the resonance effects, the conical mounting imbues diffraction gratings with larger angular tolerance than their classical counterparts. Based on these concepts, the angular-spectral and wavelength-spectral performance of resonant diffraction gratings in conical and classical mounts by numerical calculations with spectra found for conical incidence are quantified. These results will be useful in various applications demanding resonant diffraction gratings that are efficient and physically sparse.

A poroelastic model for ultrasonic wave attenuation in partially frozen brines (부분 동결된 소금물에서의 초음파감쇠에 대한 다공성탄성 모델)

  • Matsushima, Jun;Nibe, Takao;Suzuki, Makoto;Kato, Yoshibumi;Rokugawa, Shuichi
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.105-115
    • /
    • 2011
  • Although there are many possible mechanisms for the intrinsic seismic attenuation in composite materials that include fluids, relative motion between solids and fluids during seismic wave propagation is one of the most important attenuation mechanisms. In our previous study, we conducted ultrasonic wave transmission measurements on an ice-brine coexisting system to examine the influence on ultrasonic waves of the unfrozen brine in the pore microstructure of ice. In order to elucidate the physical mechanism responsible for ultrasonic wave attenuation in the frequency range of 350.600 kHz, measured at different temperatures in partially frozen brines, we employed a poroelastic model based on the Biot theory to describe the propagation of ultrasonic waves through partially frozen brines. By assuming that the solid phase is ice and the liquid phase is the unfrozen brine, fluid properties measured by a pulsed nuclear magnetic resonance technique were used to calculate porosities at different temperatures. The computed intrinsic attenuation at 500 kHz cannot completely predict the measured attenuation results from the experimental study in an ice-brine coexisting system, which suggests that other attenuation mechanisms such as the squirt-flow mechanism and wave scattering effect should be taken into account.

Evaluation of Van Khan Tooril's castle, an archaeological site in Mongolia, by Ground Penetrating Radar (GPR을 이용한 몽고 유적지 반 칸 투리일의 성 (Van Khan Tooril's castle)의 평가)

  • Khuut, Tseedulam;Sato, Motoyuki
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.69-76
    • /
    • 2009
  • We report an implementation of the Ground Penetrating Radar (GPR) survey at a site that corresponds to a ruined castle. The objective of the survey was to characterise buried archaeological structures such as walls and tiles in Van Khan Tooril's Ruin, Mongolia, by 2D and 3D GPR techniques. GPR datasets were acquired in an area 10mby 9 m, with 10 cm line spacing. Two datasets were collected, using GPR with 500MHz and 800MHz frequency antennas. In this paper, we report the use of instantaneous parameters to detect archaeological targets such as tile, brick, and masonry by polarimetric GPR. Radar polarimetry is an advanced technology for extraction of target scattering characteristics. It gives us much more information about the size, shape, orientation, and surface condition of radar targets. We focused our interpretation on the strongest reflections. The image is enhanced by the use of instantaneous parameters. Judging by the shape and the width of the reflections, it is clear that moderate to high intensity response in instantaneous amplitude corresponds to brick and tiles. The instantaneous phase map gave information about the location of the targets, which appeared as discontinuities in the signal. In order to increase our ability to interpret these archaeological targets, we compared the GPR datasets acquired in two orthogonal survey directions. A good correlation is observed for the alignments of reflections when we compare the two datasets. However, more reflections appear in the north-south survey direction than in the west-east direction. This is due to the electric field orientation, which is in the horizontal plane for north-south survey directions and the horizontally polarised component of the backscattered high energy is recorded.

Multi-fidelity Data-fusion for Improving Strain accuracy using Optical Fiber Sensors (이종 광섬유 센서 데이터 융합을 통한 변형률 정확도 향상 기법)

  • Park, Young-Soo;Jin, Seung-Seop;Yoo, Chul-Hwan;Kim, Sungtae;Park, Young-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.547-553
    • /
    • 2020
  • As aging infrastructures increase along with time, the efficient maintenance becomes more significant and accurate responses from the sensors are pre-requisite. Among various responses, strain is commonly used to detect damage such as crack and fatigue. Optical fiber sensor is one of the promising sensing techniques to measure strains with high-durability, immunity for electrical noise, long transmission distance. Fiber Bragg Grating (FBG) is a point sensor to measure the strain based on reflected signals from the grating, while Brillouin Optic Correlation Domain Analysis (BOCDA) is a distributed sensor to measure the strain along with the optical fiber based on scattering signals. Although the FBG provides the signal with high accuracy and reproducibility, the number of sensing points is limited. On the other hand, the BOCDA can measure a quasi-continuous strain along with the optical fiber. However, the measured signals from BOCDA have low accuracy and reproducibility. This paper proposed a multi-fidelity data-fusion method based on Gaussian Process Regression to improve the fidelity of the strain distribution by fusing the advantages of both systems. The proposed method was evaluated by laboratory test. The result shows that the proposed method is promising to improve the fidelity of the strain.

A Numerical Simulation of Hydrodynamic Interactions Between Two Moored Barges with Regular Waves (규칙파 중 계류된 두 바지선의 유체역학적 상호작용에 관한 수치시뮬레이션)

  • Lee, Sang-Do;Bae, Byung-Deug;Kim, Dae-Hae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.615-624
    • /
    • 2016
  • In this study, two rectangular barges in close proximity were simulated to analyze the characteristics of motion responses due to hydrodynamic interactions. Using a numerical solution from DNV-GL SESAM, coupled stiffness matrix terms for these same FEM models were added to the multiple body modes in the surge direction. Potential theory was used to calculate the first order radiation and diffraction effects on the simulated barge models. In the results, the sheltering effect of the barges was not shown at 1.3 rad/s with hull separation of 20 m in transverse waves. The separation effect between the barges was more clear with longitudinal waves and a shallow water depth. However, sway forces were influenced by hull separation with transverse waves. The peaks for sway and heave motion and sway force occurred at higher frequencies as hull separation narrowed with longitudinal and transverse waves. Given a depth of 10 m, the sway motion on the lee side of a coupled barge made a significant difference in the range of 0.2-0.8 rad/s with transverse and oblique waves. Also, the peaks for sway force were situated at lower frequencies, even when incident waves changed.

Marine Controlled-source Electromagnetic Surveys for Hydrocarbon Exploration (탄화수소 탐지를 위한 해양 인공송신원 전자탐사)

  • Kim, Hee-Joon;Han, Nu-Ree;Choi, Ji-Hyang;Nam, Myung-Jin;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.2
    • /
    • pp.163-170
    • /
    • 2006
  • The shortage of proven hydrocarbon reserves has resulted in exploration progressing from the offshore into progressively deeper water of the continental shelf. Despite the success of seismic acquisition at ever greater depths, there are marine geological terrenes in which the interpretation of seismic data is difficult, such regions dominated by scattering or high reflectivity that is characteristic of carbonate reefs, volcanic cover and submarine permafrost. A marine controlled-source electromagnetic (CSEM) method has recently been applied to the oil and gas exploration thanks to its high-resistivity characteristics of the hydrocarbon. In particular, this method produces better results in terms of sensitivity under the deep water environment rather than the shallow water. Only in the last five years has the relevance of CSEM been recognized by oil companies who now use it to help them make exploration drilling decisions. Initial results are most promising and several contractors now offer magnetotelluric and CSEM services.

Estimation of Significant Wave Heights from X-Band Radar Based on ANN Using CNN Rainfall Classifier (CNN 강우여부 분류기를 적용한 ANN 기반 X-Band 레이다 유의파고 보정)

  • Kim, Heeyeon;Ahn, Kyungmo;Oh, Chanyeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.101-109
    • /
    • 2021
  • Wave observations using a marine X-band radar are conducted by analyzing the backscattered radar signal from sea surfaces. Wave parameters are extracted using Modulation Transfer Function obtained from 3D wave number and frequency spectra which are calculated by 3D FFT of time series of sea surface images (42 images per minute). The accuracy of estimation of the significant wave height is, therefore, critically dependent on the quality of radar images. Wave observations during Typhoon Maysak and Haishen in the summer of 2020 show large errors in the estimation of the significant wave heights. It is because of the deteriorated radar images due to raindrops falling on the sea surface. This paper presents the algorithm developed to increase the accuracy of wave heights estimation from radar images by adopting convolution neural network(CNN) which automatically classify radar images into rain and non-rain cases. Then, an algorithm for deriving the Hs is proposed by creating different ANN models and selectively applying them according to the rain or non-rain cases. The developed algorithm applied to heavy rain cases during typhoons and showed critically improved results.

Diffraction Analysis of Multi-layered Grating Structures using Rigorous Equivalent Transmission-Line Theory (정확한 등가 전송선로 이론을 사용한 다층 격자 구조의 회절특성 분석)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.261-267
    • /
    • 2015
  • The eigenvalue problems involving the diffraction of waves by multi-layered grating configurations can be explained by rigorous modal expansion terms. Such a modal solution can be represented by equivalent transmission-line networks, which are generalized forms of simple conventional circuits. This approach brings considerable physical insight into the grating diffraction process of the fields everywhere. In particular, the transmission-line representation can serve as a template for computational algorithms that systematically evaluate dispersion properties, radiation effects and other optical characteristics that are not readily obtained by other methods. To illustrate the validity of the present rigorous approach, the previous research works are numerically confirmed and the results agree well each other.