• Title/Summary/Keyword: 파랑하중

Search Result 218, Processing Time 0.03 seconds

On The Development of Design Wave Loads in Classification Rules(I) (선급 강선규칙의 설계 파랑하중 산식 개발(I))

  • J.Y. Song;Y.K. Chon;T.B. Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.112-126
    • /
    • 1993
  • In this paper, unified requirements of IACS on longitudinal strength of ships are investigated using nonlinear wave loads analyses under short term irregular waves. Also, analyses on IACS wave data were carried out for the purpose of presenting the guideline for future use. While keeping theoretical consistensy, the rule requirements for horizontal shear force, bending moment and torsional moment are newly proposed for the ships of large deck openings bases on the calculation results for 17 sample ships. The requirements for side shell hydrodynamic pressure are also presented. All the calculated results are compared with other Societies and present KR rules. These formula will be checked when corresponding requirements of structural scantling are determined.

  • PDF

Second Order Elastic Analysis of Superstructures on Very Large Floating Structure with Semi-Rigid Connections (반강접 접합부를 적용한 초대형 부유식 구조물 상부구조체의 2차 탄성해석)

  • Song, Hwa-Cheol;Lee, Eun-Suk
    • Journal of Navigation and Port Research
    • /
    • v.27 no.1
    • /
    • pp.63-70
    • /
    • 2003
  • If semi-rigid connections are used for superstructures of very large floating structures (VLFS), the number of rigid connections can be reduced and more economical construction will be possible. In this study, considering service load and wave load in VLFS, the applicability of mixed use of rigid and semi-rigid connections have been studied using three types of connections for a four-bay eight-story frame. Three types of connections are used; top and seat-angle connections with double web-angle(TSD), extended end plate connections, steel tubular column with square external-diaphragm connections. ABAQUS(Finite element analysis program) is used for conducting second order elastic analysis.

Frequency Domain Analysis for Dynamic Response of Floating Structures Subject to Wave Loading (파랑하중을 받는 부유식 구조물의 동적거동에 대한 주파수영역 해석)

  • Kwon Jang Sub;Paik In Yeol;Park Jung Il;Chang Sung Pil
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.138-148
    • /
    • 2005
  • Dynamic response of floating structures such as floating body and floating bridges subject to wave load is to be calculated in frequency domain. Added mass coefficient, damping coefficient and wave exciting force are obtained numerically from frequency domain formulation of linear potential theory and boundary element method for a floating body which is partially submerged into water and subjected to wave force. Next, the equation of motion for the dynamic behavior of a floating structure which is supported by the floating bodies and modeled with finite elements is written in frequency domain. hker a hemisphere is analyzed and compared with the published references as examples of floating bodies, the hydrodynamic coefficients for a pontoon type floating body which supports a floating bridge are determined. The dynamic response of the floating bridge subject to design wave load can be solved using the coefficients obtained for the pontoons and the results are plotted in the frequency domain. It can be seen from the example analysis that although the peak frequency of the incoming wave spectrum is near the natural frequency of the bridge, the response of the bridge is not amplified due to the effect that the peak frequency of wave exciting force is away from the natural frequency of the bridge.

On the Wave Loads on a Large Volume Offshore Structure (대형해양구조물에 작용하는 파랑하중에 관하여)

  • 홍도천;홍은영;이상무
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.33-38
    • /
    • 1987
  • The first order mation responses of a floating structure and the hydrodynamic forces in regular waves are obtained by means of the linear potential theory. The first order potential is obtained directly from the numerical solution of the improved Green integral equation which is characterized by the combined surface distribution of sources and normal doublets. The mean second order wave drift force is also calculated by means of the near field method. It seems that the present method gives more accurate numerical results than other methods and the agreement between numerical and experimental results appears to be satisfactory.

  • PDF

Analysis of seabed behavior in foundation structure under wave loading (파랑 작용하에 있는 기초 구조물 해저지반의 거동에 관한 연구)

  • Yun, Seong-Kyu;Lee, Min-Ah;Choi, Seong-Jun;Kim, Tae-Hyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.187-190
    • /
    • 2011
  • 방파제 설계시 고려되는 파랑하중에 대한 설계 방법으로 기존 설계는 정수압만을 고려한 정적해석을 실시하였으며 최근 설계에서는 정정해석과 동적해석을 동시에 실시하고 있다. 하지만 이때의 동적해석 방법은 파랑하중에 의한 파압을 구조물내의 임의의 지점에서만 산정하여 등가파압으로 적용하여 해석을 하고 있다. 본 연구에서는 방파제의 경사면뿐만 아니라 해저지반에서의 파압을 추가적으로 고려함과 동시에 등 가파압이 아닌 모든 절점에서의 파압을 산정하여 파압을 적용하였다. 그 결과 현재의 설계법과 본연구의 설계법으로 구한 침하량의 값이 상당한 차이를 나타내고 있다.

  • PDF

Analysis on Response Characteristics of a Flexible Net Sheet in Waves (파랑중 유연한 그물망의 응답특성 해석)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.2
    • /
    • pp.89-96
    • /
    • 2012
  • Based on the hydroelastic theory and the matched eigenfunction expansion method(MEEM), the dynamic behavior of the porous flexible net sheet and wave forces have been investigated in monochromatic waves. The net sheet is installed vertically with the submergence depth. Top end of a net sheet is fixed and its lower end is attached by a clump weight. It is assumed that the initial tension is sufficiently large so that the effects of dynamictension variation can be neglected. The boundary condition on the porous flexible net sheet is derived based on Darcy's fine-pore model and body boundary condition. The developed analytic model can be extended to the impermeable/permeable vertical plate and the impermeable flexible membrane. The analytical model was used to study the influence of design parameters(wave characteristics, porosity, submergence depth, initial tension) on the response characteristics and wave load of the net sheet.

Wave Deformation and Blocking Performance by a Porous Dual Semi-Cylindrical Structure (투과성 이중 반원통 구조물에 의한 파 차단성능)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.10-17
    • /
    • 2010
  • The interaction of oblique incident waves with a porous dual semi-cylindrical structure is investigated under the assumption of linear potential theory. The porous dual semi-cylindrical structure consists of two concentric bottom-mounted cylindrical structures that are porous in front half and transparent in back half. By changing porosity, gap, and wave characteristics(wave frequencies, incidence angle), the wave blocking performance as well as the wave loads and the wave run-up are obtained. As a convenient measure of overall wave blocking performance, the root mean square(R.M.S.) of the wave elevation in a sheltered region is used. It is found that the porous semi-cylindrical structure may significantly reduce the wave response in a sheltered region and the wave forces decrease largely compared to the impermeable structure. The dual structure is more effective in reducing the wave response in a sheltered region than the mono type in the region of high frequencies.

Development of Structural Analysis System of Bow Flare Structure(1) - Prediction of Wave Impact Load Characteristics - (선수 구조부 구조해석 시스템 개발(1) - 파랑충격하중 특성의 추정 -)

  • S.G. Lee;M.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.77-86
    • /
    • 1999
  • The bow flare structure of a ship is designed considering wave impact loads largely caused by relative motion of the ship and wave at rough sea. Empirical design is still used because impact phenomenon and structural behaviour due to wave impact load can not examined accurately. The objective of this study is, as the first step, to predict wave impact loads giving the structural damages to the bow flare structure from the damage data inversely, using dynamic nonlinear finite element code LS/DYNA3D, and to perform various parametric studies of wave impact pressure curve for its characteristics, such as peak height, duration time, tail height, rise time, etc.. The followings were obtained from this study: Dynamic structural responses against wave impact loads are largely affected by impact pressure impulse whose amount during duration time until peak deformation is very important.

  • PDF

On the Development of Design Wave Loads in Classification Rules(II) (선급 및 강선 규칙의 설계 파랑 하중 산식 개발(II))

  • J.Y. Song;Y.K. Chon;T.B. Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.1-7
    • /
    • 1994
  • As a subsequent work presented in Ref.[1] which deals with the global dynamic wave loads in the classification rules, further studies on such as the dynamic pressures above load waterline, motions and accelerations and other local design loads were carried out. Frequency domain 2D linear strip theory is employed and statistical analyses for the concerned ship responses were carried out for the 17 existing ships to derive simple and descriptive formula which can be used as a guidelines at preliminary design stage as well as a part of classification rules. The calculated results and thereby proposed formula are compared with those of other available data, and will be incorporated in the rules for steel ships of Korean Register of Shipping.

  • PDF