• Title/Summary/Keyword: 파랑의 반사 및 전달

Search Result 10, Processing Time 0.023 seconds

Wave Reflection and Transmission Characteristics of Flap-type Floating Breakwaters (플랩형 부유 방파제의 파랑 반사 및 전달 특성)

  • Jeong, Shin-Taek;Park, Woo-Sun;Kim, Jeong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2141-2145
    • /
    • 2008
  • Three kind of system composed with buoyant flap hinged at the sea floor are modeled experimentally. The mechanically coupled system provides shelter by reflecting incident waves and by attenuating wave energy through structural and viscous damping. The characteristics of wave reflection, transmission and dynamic angle of the flap oscillation for various conditions were investigated. The structure can minimize wave transmission by attaching offshore wing wall.

  • PDF

Wave Reflection and Transmission from Buoyant Flap Typed Storm Surge Barriers - Hydraulic Experiments (부유 플랩형 고조방파제의 파랑 반사 및 전달 - 수리실험)

  • Jeong, Shin-Taek;Kim, Jeong-Dae;Ko, Dong-Hui;Kim, Dong-Hyawn;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.238-245
    • /
    • 2008
  • To evaluate wave reflection and transmission from buoyant flap-typed storm surge barriers, hydraulic experiments were performed by using regular and irregular wave conditions. Buoyant flap-typed storm surge barriers consist of buoyant main body connected with foundation structure in the seabed by hinge. The characteristics of wave reflection, transmission and dynamic response of the structure were investigated for 36 regular and 4 irregular wave conditions. It was also evaluated the usage of plain plate attached on the buoyant main body as one of alternatives to control wave reflection and transmission. From the hydraulic experiments, it was found that the case of plain plate attached on the offshore side is very effective to improve the wave transmission as well as reflection. But, the effect of the case on the harbor side might be negligible.

Finite Element Analysis for Multiple Floating Breakwaters (다열 부유식 방파제의 유한요소 해석)

  • 정신택;박우선;이호찬
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.257-264
    • /
    • 2002
  • This paper is concerned with the analysis of wave reflection and transmission from multiple floating breakwaters. Linear potential theory was used for modeling wave field, and the behaviors of the floating breakwaters was represented as linearized equation of motions. The boundary value problem for the wave field was discretized by Galerkin technique. The radiation condition at infinity was modeled as infinite elements developed by Park et al.(1991). The validation of the developed model was given through the comparison with hydraulic experimental data conducted by Park et al.(2000). The possibility for the application of multiple floating breakwaters was also discussed based on the numerical experiments.

Numerical Analysis of Wave Deformation with Sea Bottom Variation (I) (해저지형변화에 따른 파랑의 수치해석(I))

  • 김성득;이성대
    • Water for future
    • /
    • v.19 no.3
    • /
    • pp.259-266
    • /
    • 1986
  • A numerical study of the process of wave deformation, such as reflection and transmission coefficients and wave forms with bottom change was carried out by Boundary Element Method using linear elements. It is assumed that the incident wave is normal and oblique to the bottom and the wave may be described by linear theory The accuracy of the computational scheme is investigated by comparing the results of other researchers in the following several cases. (1) Simple and sloping stepped bottom geometry (2) Submerged breakater type bottom geometry (3) Trench type bottom geometry

  • PDF

Wave Control by Submerged Breakwater under the Solitary Wave(Tsunami) Action (고립파(지진해일) 작용하의 수중방파제에 의한 파랑제어)

  • Lee, Kwang Ho;Kim, Chang Hoon;Jeong, Seong Ho;Kim, Do Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.323-334
    • /
    • 2008
  • Present study examined the functionality of the solitary wave (tsunami) control of the two-rowed porous submerged breakwater by numerical experiments, using a numerical wave tank which is based on the Navier-Stokes equation to explain fluid fields and uses a Volume of Fluid (VOF) method to capture the free water surface. Solitary wave was generated by the internal wave source installed within the computational zone in the numerical wave tank and its wave transformations by structure were compared with those in the previous study. Comparisons with the precious numerical results showed a good agreement. Based on these results, several tow-dimensional numerical modeling investigations of the water fields, including wave transformations, reflection, transmission and energy flux, by the one- and two-rowed permeable submerged breakwater under solitary waves were performed. Even if, it is a research of the limited scope, in case of two-rowed permeable submerged breakwater with $h_0/h=0.925$ ($h_0$ is height of submerged breakwater and h is water depth), the wave height damping in range of $l/L_{eff}>0.4$($L_{eff}$ is effective distance of solitary wave) can reach nearly 60% of the incident wave height. In addition, it is found that reflection coefficient increases nearly 47% and transmission coefficient decreases nearly 18% than one-rowed one. The numerical results revealed that the tow-rowed submerged breakwater can control the incident solitary wave economically and more efficiently than the one-rowed one.

Wave Screening Performance Using Floating and Submerged Breakwaters (부유식방파제와 잠제를 이용한 파랑 차단 성능 연구)

  • Won Chul Cho;Jin Won Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.4
    • /
    • pp.224-231
    • /
    • 2003
  • In this study, the hybrid breakwater system - a breakwater system combining the floating breakwater with the submerged breakwater - is used to improve the wave screening performance that may not be achieved by using the floating breakwater or the submerged breakwater, separately. Two-dimensional finite element method is used for numerical analysis and the wave reflection ratio and the wave transmission ratio are analyzed for the proposed case. In case of using the hybrid breakwater system, wave screening performance is more effective than in case of using the floating breakwater or the submerged breakwater, separately. It also shows an effective wave screening on the long wave period and an advanced wave screening performance with low height of the submerged breakwater.

Surface and Internal Waves Scattering by Partial Barriers in a Two-Layer Fluid (이층유체에서 부분 장벽에 의한 표면파와 내부파의 분산)

  • Kumar, P.Suresh;Oh, Young-Min;Cho, Won-Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.25-33
    • /
    • 2008
  • Water waves are generated mainly by winds in open seas and large lakes. They carry a significant amount of energy from winds into near-shore region. Thereby they significantly contribute to the regional hydrodynamics and transport process, producing strong physical, geological and environmental impact on coastal environment and on human activities in the coastal area. Furthermore an accurate prediction of the hydrodynamic effects due to wave interaction with offshore structures is a necessary requirement in the design, protection and operation of such structures. In the present paper surface and internal waves scattering by thin surface-piercing and bottom-standing vertical barriers in a two-layer fluid is analyzed in two-dimensions within the context of linearized theory of water waves. The reflection coefficients for surface and internal waves are computed and analyzed in various cases. It is found that wave reflection is strongly dependent on the interface location and the fluid density ratio apart from the barrier geometry.

Hybrid Element Model for Wave Transformation Analysis (파랑 변형 해석을 위한 복합 요소 모형)

  • 정태화;박우선;서경덕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.3
    • /
    • pp.159-166
    • /
    • 2003
  • In this study, we develop a finite element model to directly solve the Laplace equation while keeping the same computational efficiency as the models based on the extended mild-slope equation which has been widely used for calculation of wave transformation in shallow water. For this, the computational domain is discretized into finite elements with a single layer in the vertical direction. The velocity potential in the element is then expressed in terms of the potentials at the nodes located at water surface, and the Galerkin method is used to construct the numerical model. A common shape function is adopted in horizontal direction, and the cosine hyperbolic function in vertical direction, which describes the vertical behavior of progressive waves. The model was developed for vertical two-dimensional problems. In order to verify the developed model, it is applied to vertical two-dimensional problems of wave reflection and transmission. It is shown that the present finite element model is comparable to the models based on extended mild-slope equations in both computational efficiency and accuracy.

Control of Short-period and Solitary Waves Using Two-rowed Impermeable Rectangular Submerged Dike (2열 불투과성 사각형 잠제를 이용한 단주기파랑 및 고립파의 제어)

  • Lee, Kwang-Ho;Jung, Sung-Ho;Ha, Sun-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.203-214
    • /
    • 2010
  • This study numerically investigates the wave control of 2-rowed Impermeable Rectangular Submerged Dike(IRSD) with an object of how to control short-period and solitary waves simultaneously based on the Bragg resonance phenomenon that elevates the wave control performance. The boundary integral method using Green formula and the 3-D one-field Model for immiscible TWO-Phase flows (TWOPM-3D) by 3-D numerical wave flume have been used for the numerical predictions for short-period and solitary waves, respectively. These numerical models were verified through the comparisons with the previously published numerical results by other researchers. Through the parametric tests of numerical experiments for short-period waves, an optimum model of 2-rowed IRSD of a lowest transmission coefficient has been found. Furthermore, the performances of 3-D wave control for solitary waves were evaluated for the various free board, crown widths and gap distance between dikes, and have been compared with those of a single-rowed IRSD. Numerical results show that a 2-rowed IRSD with a less cross sectional area than 1-rowed one improves the wave attenuation performances when it is compared to that of single-rowed IRSD. Within the test frequency ranges of the numerical simulations conducted in this study, 2-rowed IRSD with an optimum gap distance shows an outstanding improvement of the wave attenuation up to 58% compared to that of single-rowed IRSD.

Effect of Wall Thickness of Perforated Wall with Vertical Slits on Wave Reflection and Transmission (연직 슬릿 유공벽의 벽두께가 파랑 반사 및 전달에 미치는 영향)

  • Kwon, Kab Keun;Lee, Jong In;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.6
    • /
    • pp.343-351
    • /
    • 2014
  • The reflection and transmission coefficients of waves due to perforated wall are mainly determined by both the porosity and wall thickness of the perforated wall and the period and nonlinearity of incident waves. Among them the wall thickness is very important because it affects the head loss coefficient and the inertia length of the wall. However, by employing the head loss coefficient derived for sharp crested orifice, the previous researches have neglected, or incorrectly considered the effect of wall thickness on the head loss coefficient. Even though it is considered, the effect of the inertia length is neglected in some empirical formulae. Thus, the effect of wall thickness on the reflection and transmission coefficients of waves is not properly considered. In this study comprehensive experiments are conducted for the perforated walls with various thicknesses, and the results are compared with those predicted by the empirical formulae. As a result it is found that the existing formulae can not properly consider the effect of wall thickness, and it is confirmed that a new formula which can correctly consider the effect of wall thickness on the head loss coefficient is necessary.