• Title/Summary/Keyword: 파동 주파수

Search Result 132, Processing Time 0.025 seconds

Comparison of the Wave Propagation Group Velocity in Plate and Shell (평판 및 셸에서의 파동 전파 군속도 비교)

  • Lee, Jeong-Han;Park, Jin-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.483-491
    • /
    • 2016
  • Precision of theoretical group velocity of waves in shell structures was discussed for the purpose of source localization of loose parts impact in pressure vessels of nuclear power plants. Estimating exact location of loose parts impact inside a reactor or a steam generator is very important in safety management of a NPP. Evaluation of correct propagation velocity of impact signals in pressure vessels, most of which are shell structures, is essential in impact source localization. Theoretical group velocities of impact signals in a plate and a shell were calculated by wave equations and compared to the velocities measured experimentally in a plate specimen and a scale model of a nuclear reactor. The wave equation applicable to source localization algorithm in shell structures was chosen by the study.

Study on the Frequency-producer Softwearization of the Detailed Micro-wave Tool (미세파동 생체활성기의 주파수 발생장치 소프트웨어화 연구)

  • Kim Gyeong Cheol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.50-52
    • /
    • 2004
  • We study on the frequency-producer softwearizing method of the already existed detailed-micro-wave tool. In the results, we can attain the more and more miniaturization of the existing tool and the frequency-producer softwearization. The frequency-producer softwearization works are modulizing and each parts are not interdependence, therefore the works are achieved independently. The modulization works are subdivided the drawing up the micro frequency graph, the formation of frequency file, and the frequency productionㆍamplificationㆍtransformation. Each modul is library file, and one modul is organized for the feasibly using another application.

Wrap-around Noise Removal by Seismic Wave Attenuation (Seismic Wave Attenuation에 의한 Wrap-around Noise의 제거)

  • 정성종
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.3
    • /
    • pp.285-291
    • /
    • 1987
  • Seismic waves are attenuated by losses of energy as they propagate through the earth. One way to model this numerically is to make the velocity a complex number, the real part giving the phase velocity and the imaginary part the attenuation. This models wave propagation in a medium for which the logarithmic decrement is independent of frequency(attenuation coefficient is proportional to frequncy). The aim is to modify forward and inverse numerical modeling so that attenuation can be specified as a function of position.

  • PDF

A Comparative Study between Green's Function Method and Fourier Transform Method in Determining Thermal Wave Characteristics (열전도파 특성을 위한 Green's 함수법과 Fourier 변환법의 비교 연구)

  • Park, S.K.;Lee, Y.H.;Lim, J.H.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.16-24
    • /
    • 2000
  • 고체내의 열에너지의 전달을 분석하기 위하여 고전적인 Fourier 열전도 법칙과 에너지 보존식에서 유도되는 열전도 방정식을 사용해 왔다. 이러한 열전도 방정식은 열전도가 무한한 속도로 진행된다는 것을 의미하고 있다. 그러나 극저온상태에서나 매우 급속한 열전도과정 중 매우 짧은 시간의 상태에서 non-Fourier 모델에 기초를 둔 쌍곡선형 열전도 방정식이 도입되었다. 최근의 이에 관한 연구에서 열전도가 파장의 형태로 유한한 전파속도를 갖는다는 것이 실험적으로 증명되었고 이로부터 여러 가지 실험적인 해석과 이론 해석이 전개되었다. 본 논문에서는 열전파 속도의 유한한 성질을 나타내는 수정된 열전도 법칙을 이용하여 1차원 평판에 대하여 공간에 대한 finite Fourier 변환 방법과 Green 함수 방법으로 해석하여 열전도파의 파동 성질, 공진 현상 및 위상차를 고찰하고자 한다. 열전도파가 갖는 모달 주파수에 대해 임계값을 갖으며 이 임계값을 초과할 때 공진 현상과 위상차를 고찰할 수 있었다.

  • PDF

Vulnerability Assessment for a Complex Structure Using Vibration Response Induced by Impact Load (복합 구조물의 충격 응답 특성을 이용한 취약성 평가 모델 연구)

  • Park, Jeongwon;Koo, Man Hoi;Park, Junhong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1125-1131
    • /
    • 2014
  • This work presents a vulnerability assessment procedure for a complex structure using vibration characteristics. The structural behavior of a three-dimensional framed structure subjected to impact forces was predicted using the spectral element method. The Timoshenko beam function was applied to simulate the impact wave propagations induced by a high-velocity projectile at relatively high frequencies. The interactions at the joints were analyzed for both flexural and longitudinal wave propagations. Simulations of the impact energy transfer through the entire structure were performed using the transient displacement and acceleration responses obtained from the frequency analysis. The kill probabilities of the crucial components for an operating system were calculated as a function of the predicted acceleration amplitudes according to the acceptable vibration levels. Following the proposed vulnerability assessment procedure, the vulnerable positions of a three-dimensional combat vehicle with high possibilities of damage generation of components by impact loading were identified from the estimated vibration responses.

Wave Generation and Its Effect on Lesion Detection in Sonoelastography: Theory and Simulation Study (음향 탄성영상법에서 연조직 내 파동 발생과 병변 검출의 특성: 이론 및 시뮬레이션 연구)

  • 박정만;권성재;정목근
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.282-293
    • /
    • 2005
  • Sonoelastography is an ultrasound-based technique that visualizes the elastic properties of soft tissues by measuring the tissue motion generated by an externally applied vibration. In this paper. the characteristics of wave generation in soft tissues due to an acoustic vibrator are studied. The effects of modal patterns on the detectability of lesions such as tumors in senoelastography are also investigated These are accomplished by analyzing the vibration patterns calculated using theoretical equations and finite element methods in halt space, infinite plate. and finite-sized tissue. A finite-width source generates shear waves with large amplitude Propagating in specific directions. and the generation characteristics depend both on the width and frequency of the vibrator. as well as the distance from it. It is shown in a finite-sized tissue that the lesion detection in displacement images is quit dependent on the modal patterns inside tissue. In contrast it Is also found that the lesion detectability in strain images is less dependent on the modal Patterns and is much better than that in displacement images.

Theoretical Modeling of Surface Wave Propagation for SASW Testing Method (수중 주파수영역표면파괴기법의 역해석 과정에서 적용되는 파동해석기법)

  • Lee, Byung-Sik
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.4
    • /
    • pp.251-260
    • /
    • 2000
  • Applicabilities of two numerical methods, the 2-dimensional and the 3-dimensional method, are evaluated to inverse test results obtained from the underwater SASW(Spectral -Analysis-of-Surface-Waves) method. As a result of this study, it has been found that the 2-dimensional method can supposed to be applicable for the cases where stiffness of soil layer increases gradually with depth, and the stiffness is relatively low. For the other cases, however, it has been concluded that the 3-dimensional method needs to be applied to determine realistic theoretical dispersion curves. An example is also shown that in situ soil profile underwater is estimated from experimental dispersion curves using the 3-dimensional method. As a results, it can be concluded that the underwater SASW method can be effectively applied to explore the underwater soil condition.

  • PDF

EFFECTS OF THE RING CURRENT ON ULF WAVES IN THE MAGNETOSPHERE (지구자기구의 극초저주파수 파에 대한 RING CURRENT의 효과)

  • 김관혁;이동훈
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.93-106
    • /
    • 1994
  • A three-dimensional box model has been developed to study the MHD wave coupling in the magnetosphere. In this model, the effects of the ring current are included by assuming the pressure gradients in the MHD equations. It is found that the axisymmetric ring current may play an important role in producing spectral noises in compressional waves, while field line resonances have no such disturbances. These results may explain the current observational characteristics that compressional cavity modes hardly appear in the satellite experiment, while field line resonances often occur. Our numerical resluts also suggest that any discrete spectral peaks such as the global cavity modes can hardly occur where the pressure distribution of the ring current becomes important. The continuous band of transverse waves is found to be unperturbed until the ring current becomes significantly asymmetric with respect to the dipole axis. In addition, our results in the absence of the pressure gradient are found to be consistent with the previous results from the box-like and dipole models.

  • PDF

Weighted-averaging Finite-element Method for Scalar Wave Equation in the Frequency Domain (가중평균 유한요소법을 이용한 주파수영역에서의 인공 음향파 합성)

  • Hyun Hye-Ja;Suh Jung-Hee;Min Dong-Joo
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.169-177
    • /
    • 2002
  • We develop the weighted-averaging finite-element method which uses four kinds of element sets. By constructing global stiffness and mass matrices for four kinds of element sets and then averaging them with weighting coefficients, we obtain a new global stiffness and mass matrix. With the optimal weighting coefficients minimizing grid dispersion and grid anisotropy, we can reduce the number of grid points required per wavelength to 4 for a $1\%$ upper limit of error. We confirm the accuracy of our weighted-averaging finite-element method through accuracy analyses for a homogeneous and a horizontal-layer model. By synthetic data example, we reconfirm that our method is more efficient for simulating a geological model than previous finite-element methods.

Time-Frequency Analysis of Dispersive Waves in Structural Members Under Impact Loads (시간-주차수 신호처리를 이용한 구조용 부재에서의 충격하중에 의한 분석 파동의 해석)

  • Jeong, H.;Kwon, I.B.;Choi, M.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.481-489
    • /
    • 2000
  • A time-frequency analysis method was developed to analyze the dispersive waves caused by impact loads in structural members such as beams and plates. Stress waves generated by ball drop and pencil lead break were recorded by ultrasonic transducers and acoustic emission (AE) sensors. Wavelet transform (WT) using Gabor function was employed to analyze the dispersive waves in the time-frequency domain, and then to find the arrival time of the waves as a function of frequency. The measured group velocities in the beam and the plate were compared with the predictions based on the Timoshenko beam theory and Rayleigh-Lamb frequency equations, respectively. The agreements were found to be very good.

  • PDF