• Title/Summary/Keyword: 파동토모그래피

Search Result 7, Processing Time 0.016 seconds

Nonlinear Traveltime Tomography Method Using Fresnel Zone (Fresnel 영역을 고려한 비선헝 주시 토모그래피)

  • Cho, Chang-Soo;Ji, Jun;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.43-48
    • /
    • 1998
  • Recently seismic tomography has been widely used to visualize subsurface structure for resource explorations and construction site evaluation. We studied a way to include fresnel zone concept in the conventional ray-based traveltime tomography. The algorithm developed uses the same order of computing time as the conventional traveltime to mography but incorporates the rigorous wavepath concept of wave-equation tomography. Some experiments to synthetic and real data show reasonable results compared to conventional ray-based traveltime tomography.

  • PDF

Electromagnetic Traveltime Tomography with Wavefield Transformation (파동장 변환을 이용한 전자탐사 주시 토모그래피)

  • Lee, Tae-Jong;Suh, Jung-Hee;Shin, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.17-25
    • /
    • 1999
  • A traveltime tomography has been carried out by transforming electromagnetic data in frequency domain to wave-like domain. The transform uniquely relates a field satisfying a diffusion equation to an integral of the corresponding wavefield. But direct transform of frequency domain magnetic fields to wave-field domain is ill-posed problem because the kernel of the integral transform is highly damped. In this study, instead of solving such an unstable problem, it is assumed that wave-fields in transformed domain can be approximated by sum of ray series. And for further simplicity, reflection and refraction energy compared to that of direct wave is weak enough to be neglected. Then first arrival can be approximated by calculating the traveltime of direct wave only. But these assumptions are valid when the conductivity contrast between background medium and the target anomalous body is low enough. So this approach can only be applied to the models with low conductivity contrast. To verify the algorithm, traveltime calculated by this approach was compared to that of direct transform method and exact traveltime, calculated analytically, for homogeneous whole space. The error in first arrival picked by this study was less than that of direct transformation method, especially when the number of frequency samples is less than 10, or when the data are noisy. Layered earth model with varying conductivity contrasts and inclined dyke model have been successfully imaged by applying nonlinear traveltime tomography in 30 iterations within three CPU minutes on a IBM Pentium Pro 200 MHz.

  • PDF

Resolution Limits of Cross-Well Seismic Imaging Using Full Waveform Inversion (전파형 역산을 이용한 시추공 영상의 분해능)

  • Cho, Chang-Soo;Lee, Hee-Il;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.33-45
    • /
    • 2002
  • It was necessary to devise new techniques to overcome and enhance the resolution limits of traveltime tomography. Waveform inversion has been one of the methods for giving very high resolution result. High resolution image could be acquired because waveform inversion used not only phase but amplitude. But waveform inversion was much time consuming Job because forward and backward modeling was needed at each iteration step. Velocity-stress method was used for effective modeling. Resolution limits of imaging methods such as travel time inversion, acoustic and elastic waveform inversion were investigated with numerical models. it was investigated that Resolution limit of waveform inversion was similar tn resolution limit of migration derived by Schuster. Horizontal resolution limit could be improved with increased coverage by adding VSP data in cross hole that had insufficient coverage. Also, waveform inversion was applied to realistic models to evaluate applicability and using initial guess of travel time tomograms to reduce non-linearity of waveform inversion showed that the better reconstructed image could be acquired.

Study of seismic amplitude method using single source for tunnel detection (터널탐사에 단일 파동원을 이용한 탄성파 진폭법에 관한 연구)

  • Suh, Baek-Soo;Sohn, Kwon-Ik
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.3-7
    • /
    • 2007
  • There are many techniques to calculate the exact position of deep seated tunnel. Especially, tomography method has been used generally in present days. This method has been performed mainly by wave traveltime. Because of short interval of two measuring boreholes, it was very hard to interpret the exact tunnel position. To solve this problem, seismic amplitude method was tried to detect exact pososition of tunnel in this study.

  • PDF

Improved full-waveform inversion of normalised seismic wavefield data (정규화된 탄성파 파동장 자료의 향상된 전파형 역산)

  • Kim, Hee-Joon;Matsuoka, Toshifumi
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.86-92
    • /
    • 2006
  • The full-waveform inversion algorithm using normalised seismic wavefields can avoid potential inversion errors due to source estimation required in conventional full-waveform inversion methods. In this paper, we have modified the inversion scheme to install a weighted smoothness constraint for better resolution, and to implement a staged approach using normalised wavefields in order of increasing frequency instead of inverting all frequency components simultaneously. The newly developed scheme is verified by using a simple two-dimensional fault model. One of the most significant improvements is based on introducing weights in model parameters, which can be derived from integrated sensitivities. The model-parameter weighting matrix is effective in selectively relaxing the smoothness constraint and in reducing artefacts in the reconstructed image. Simultaneous multiple-frequency inversion can almost be replicated by multiple single-frequency inversions. In particular, consecutively ordered single-frequency inversion, in which lower frequencies are used first, is useful for computation efficiency.

Travel Time Calculation Using Mono-Chromatic Oneway Wave Equation (단일주파수 일방향파동방정식을 이용한 주시계산)

  • Shin, Chang-Soo;Shin, Sung-Ryul;Kim, Won-Sik;Ko, Seung-Won;Yoo, Hai-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.4
    • /
    • pp.119-124
    • /
    • 2000
  • A new fast algorithm for travel time calculation using mono-chromatic one-way wave equation was developed based on the delta function and the logarithms of the single frequency wavefield in the frequency domain. We found an empirical relation between grid spacing and frequency by trial and error method such that we can minimize travel time error. In comparison with other methods, travel time contours obtained by solving eikonal equation and the wave front edge of the snapshot by the finite difference modeling solution agree with our algorithm. Compared to the other two methods, this algorithm computes travel time of directly transmitted wave. We demonstrated our algorithm on migration so that we obtained good section showing good agreement with original model. our results show that this new algorithm is a faster travel time calculation method of the directly transmitted wave for imaging the subsurface and the transmission tomography.

  • PDF

Study of seismic wave propagation around tunnel (터널 주위의 탄성파 전파양상에 관한 연구)

  • Suh, Baek-Su;Oh, Seok-Hoon;Shon, Kwon-Ik;Lee, Sang-Chul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.291-296
    • /
    • 2006
  • The aspect of wave propagation around cavity was investigated for the exact inversion of crosshole tomography data in order to understand the possibility of the existence of underground cavity. We found that the adequate frequency range for the tunnel investigation was about 2kHz to 5kHz, and the grid space was set up to 1/10 length of wavelength. The propagation of the seismic wave near the cavity may go through or detour the cavity according to the seismic velocity of inside of cavity. The detouring wave propagates with the seismic velocity of mother rock in spite of the velocity of inside of cavity. The smaller the velocity difference between the mother rock and cavity, the more frequent penetration of the seismic wave through the cavity was appeared.

  • PDF