• Title/Summary/Keyword: 파동속

Search Result 71, Processing Time 0.024 seconds

Deep-Learning Seismic Inversion using Laplace-domain wavefields (라플라스 영역 파동장을 이용한 딥러닝 탄성파 역산)

  • Jun Hyeon Jo;Wansoo Ha
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.84-93
    • /
    • 2023
  • The supervised learning-based deep-learning seismic inversion techniques have demonstrated successful performance in synthetic data examples targeting small-scale areas. The supervised learning-based deep-learning seismic inversion uses time-domain wavefields as input and subsurface velocity models as output. Because the time-domain wavefields contain various types of wave information, the data size is considerably large. Therefore, research applying supervised learning-based deep-learning seismic inversion trained with a significant amount of field-scale data has not yet been conducted. In this study, we predict subsurface velocity models using Laplace-domain wavefields as input instead of time-domain wavefields to apply a supervised learning-based deep-learning seismic inversion technique to field-scale data. Using Laplace-domain wavefields instead of time-domain wavefields significantly reduces the size of the input data, thereby accelerating the neural network training, although the resolution of the results is reduced. Additionally, a large grid interval can be used to efficiently predict the velocity model of the field data size, and the results obtained can be used as the initial model for subsequent inversions. The neural network is trained using only synthetic data by generating a massive synthetic velocity model and Laplace-domain wavefields of the same size as the field-scale data. In addition, we adopt a towed-streamer acquisition geometry to simulate a marine seismic survey. Testing the trained network on numerical examples using the test data and a benchmark model yielded appropriate background velocity models.

A Study on Sound Wave and Signal Processing in Enclosed Space (밀폐공간에서의 소리파동과 신호처리에 관한 연구)

  • Jeon, Yong-Woo;Soh, Dea-Wha
    • Journal of the Speleological Society of Korea
    • /
    • no.70
    • /
    • pp.63-74
    • /
    • 2006
  • 소리의 파동, 특히 밀폐된 동굴 속에서 일어나는 음향파동에 대한 과학적 접근과 함께 첨단과학을 통한 소리의 분석기법을 통하여 소리과학과 동굴 및 그 구조에 따른 음파의 공명(증폭)현상과 인류생활의 소리문화의 상관성을 재조명하였다. 따라서 동굴 속에서 음악을 연주하는 경우 작은 소리라도 매우 웅장한 소리효과를 낼 수 있으며, 고음보다는 저음에서의 울림효과를 크게 가져 올 수 있다. 특히 이러한 파동현상과 음향효과를 통하여 기 발굴된 동굴의 체계적 관리 방안과 미 발굴 지하 동굴의 발굴에도 적용할 수 있을 것으로 기대되며, 동굴의 음향파동현상을 응용한 기술로 지각운동과 변화 및 동굴의 상태 분석과 변화 요인을 관찰하는데 효과적인 역할과 방법을 제공할 수 있을 것으로 기대된다.

Study on the Drivers' Response Characteristics Using Spectral Analysis of Car Following Data (차량 추종자료의 파동해석을 통한 운전자 반응 특성 연구)

  • CHAE, Chandle;OH, Sei-Chang;KIM, Youngho;LEE, Jun
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.4
    • /
    • pp.405-416
    • /
    • 2015
  • This paper developed a method analyze drivers' response characteristics using spectral analysis with car following data. Cross-correlation function and cross spectrum are produced by Fourier transform from speed fluctuations of leading vehicle and following vehicle during the designated time ${\tau}$. Based on the analysis data, a process to calculate the reaction time and stimulus-adaption index of following vehicle was developed and 170 cases of field data was applied. It was reported average of 0.654 and 2.091 seconds of stimulus-adaption index and reaction time respectively. In conclusion, the developed indexes might contribute to enhance vehicle control of autonomous vehicle more efficient and safer.

Implementation of semi-infinite boundary condition for dynamic finite element analysis (동적 유한요소해석에서의 반무한 경계조건의 실행)

  • Choi, Chang-Ho;Chung, Ha-Ik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.600-606
    • /
    • 2006
  • 실제 지반은 경계가 없는 무한상태로 존재하기 때문에 지반구조물의 동적거동을 유한요소법을 이용하여 해석할 시 모델의 영역을 성립하는 것은 특별한 고려가 필요하다. 유한요소법에서의 동적해석은 파동의 전달을 포함하기 때문에 모델의 경계에서 인공적인 경계조건이 필요하다. 인공적인 경계 조건은 유한요소내의 지반상태를 무한상태로 변형시킬 수 있어야 하며, 경계에 도달하는 응력 파동을 모델내로 반사시키지 않고 흡수 할 수 있어야 한다. 본 논문에서는 간단한 점 탄성 반무한 불연속 요소를 이용하여 지반구조물의 동적해석을 수행하는 방법을 보여준다. 반무한 요소의 실행은 OpenSees라는 유한요소 해석프로그램을 이용하여 수행되었으며, 예를 통하여 불연속 요소가 경계에 도달하는 응력 파동을 충분히 흡수하여 유한요소 모델을 반무한 상태로 전환 시킬 수 있다는 것을 보여준다.

  • PDF

육계 파동과 생산 조절

  • 김영옥
    • KOREAN POULTRY JOURNAL
    • /
    • v.4 no.2 s.28
    • /
    • pp.16-23
    • /
    • 1972
  • 최근 우리나라 양계업계는 극심한 불황으로 인하여 유래없는 가격으로 거래되어 수많은 양계인이 도산을 하거나 도산직전에서 허덕이고 있다. 이러한 악순환은 거의 예외없이 생산과 소비의 부조화속에서 파생되거나 국내 전체의 구매력 감소로 인한 생산물의 체화등으로 인하여 일어나는 것으로 이번의 육계가격폭락으로 인하여 각 생산자단체나 업계의 지도층에 있는 사람들은 이러한 고질적 악순환을 뿌리뽑기 위하여 많은 노력을 경주하였다. 이번 파동의 전말을 알아 보고 그에 대한 대책을 우리 나름으로 세우지 않으면 않되겠다.

  • PDF

Stability of the Divergent Barotropic Rossby-Haurwitz Wave (발산 순압 로스비-하우어비츠 파동의 안정성)

  • Jeong, Han-Byeol;Cheong, Hyeong-Bin
    • Journal of the Korean earth science society
    • /
    • v.37 no.2
    • /
    • pp.107-116
    • /
    • 2016
  • Stability of the barotropic Rossby-Haurwitz wave is investigated using the numerical models on the global domain. The Rossby-Haurwitz wave under investigation is composed of the basic zonal flow of super-rotation and a finite amplitude spherical harmonic wave. The Rossby-Haurwitz wave is given as either steady or unsteady wave by adjusting the strength of the super-rotating zonal flow. Stability as well as the growth rate of the wave in the numerical simulation is determined by comparing the perturbation amplitude at two different time stages. Unstable modes of the Rossby-Haurwitz wave exhibited a horizontal structure composing of various zonal-wavenumber components. The vorticity perturbation for some modes showed a discontinuity around the area of weak flow, which was found robust regardless of the horizontal resolution of the model. Fourier finite element model was shown to generate the unstable mode in earlier stage of the time integration due to less accuracy compared to the spherical harmonic spectral model. Taking the overall accuracy of the models into consideration, the time by which the unstable mode begin to dominate over the spherical harmonic wave was estimated.

Wave Propagation Characteristics in Saturated Porous Media II. Parametric Studies (포화된 다공성매체에서 파동의 전파특성 II. 파라미터 연구)

  • Kim, Sun-Hoon;Kim, Kwang-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.191-206
    • /
    • 2007
  • The general theoretical solutions for the wavespeed and damping derived in Part 1 of this work, are incorporated into the computer code. In this paper the code is used in a parametric study of the influence of excitation frequency and variations in material properties on propagation velocity and damping. Compressional wave velocity for waves of the first kind is shown to vary as a function of the frequency-permeability product, with a zone where wavespeed transitions from a lower bound value to a higher bound value with increasing values of the product. Damping is seen to be a maximum where the rate of change in wavespeed is greatest. Waves of the second kind also show a transition in wavespeed from near zero at low values of the frequency-permeability product to an upper bound value at higher values of the product.

A Numerical Method for Wave Reflection and Transmission Due to Local Non-Uniformities in Waveguides at High Frequencies (국부적 불연속을 가진 도파관의 고주파수 대역 파동 반사 및 투과 해석 기법)

  • Ryue, Jung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.314-324
    • /
    • 2010
  • In waveguide structures, waves may be partially reflected by local non-uniformities. The effects of local non-uniformities has been previously investigated by means of a combined spectral element and finite element (SE/FE) method at relatively low frequencies. However, since the SE is formulated based on a beam theory, the SE/FE method is not appropriated for analysis at higher frequencies where complex deformation of the waveguide occurs. So it is necessary to extend this approach for high frequencies. For the wave propagation at higher frequencies, a combined spectral super element and finite element (SSE/FE) method is introduced in this paper. As an example of the application of this method, wave reflection and transmission due to a local defect in a rail are simulated at frequencies between 20kHz and 30kHz. Also numerical errors are evaluated by means of the conservation of the incident power.

Impact Response Behaviors of Laminated Composite Plates Subjected to the Transversely Impact of a Steel Ball (강구에 의한 횡방향 충격을 받는 적층복합판의 충격 응답 거동)

  • 김문생;김남식;박승범;백인환
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.44-56
    • /
    • 1993
  • The purpose of this paper is to analyze the impact response behaviors of glass/epoxy laminated composite plates subjected to the transversely impact of a steel ball. For this purpose, dynamic finite element analysis based on the higher-order shear defomation plate theory is used to compute the contact forces, rebound velocity of a steel ball, and dynamic strain response histories. And low-velocity and high-velocity impact experiments were conducted to compare the results and compute the wave propagation velocities. The results obtained from impact experiments are in good agreement with those of dynamic finite element analysis. Also the wave propagation velocities obtained from high-velocity impact experiments and wave propagation theory agree well, and wave velocities were higher in the smaller radius of steel ball.

  • PDF

Improvement of Reverse-time Migration using Homogenization of Acoustic Impedance (음향 임피던스 균질화를 이용한 거꿀시간 참반사보정 성능개선)

  • Lee, Gang Hoon;Pyun, Sukjoon;Park, Yunhui;Cheong, Snons
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.2
    • /
    • pp.76-83
    • /
    • 2016
  • Migration image can be distorted due to reflected waves in the source and receiver wavefields when discontinuities of input velocity model exist in seismic imaging. To remove reflected waves coming from layer interfaces, it is a common practice to smooth the velocity model for migration. If the velocity model is smoothed, however, the subsurface image can be distorted because the velocity changes around interfaces. In this paper, we attempt to minimize the distortion by reducing reflection energy in the source and receiver wavefields through acoustic impedance homogenization. To make acoustic impedance constant, we define fake density model and use it for migration. When the acoustic impedance is constant over all layers, the reflection coefficient at normal incidence becomes zero and the minimized reflection energy results in the improvement of migration result. To verify our algorithm, we implement the reverse-time migration using cell-based finite-difference method. Through numerical examples, we can note that the migration image is improved at the layer interfaces with high velocity contrast, and it shows the marked improvement particularly in the shallow part.