• Title/Summary/Keyword: 파도의 방향

Search Result 48, Processing Time 0.032 seconds

Radio Path Loss and Angle of Arrival Measurements to the Radio Environments at 60GHz (60GHz 대역에서의 전파 환경별 경로손실 및 도래각 측정)

  • Song, Ki-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2233-2240
    • /
    • 2007
  • This paper presents the measured path loss exponents and standard deviations using measured data at 60GHz to analyze the propagation characteristics of millimeter wave bands having great demand for picocellular communications. In addition the angle of arrival(AOA) were measured to analyze the arrival direction of muitipath waves affecting the received signal strength. As results of analysis, the pathloss exponents in each environment are found to be lower than 2 for free space pathloss exponent. They were determined with the qualities of bottom materials affecting signal strength. The angles of arrival by multipath waves were different with the circumference structures between transmitter and receiver. That is, the multipath waves excluding direct and ground reflected wave were difficult to find in wide space such a gymnasium and playground, however the wall multipath waves were found to arrive at receiver in the corridor. The multipath waves at 60GHz can be known to hardly affect to the received signal strength because of weak signals compared with direct wave.

Annealing Temperature Dependence of the Spin Wave for Polycrystalline $Ni_{83}Fe_{17}$ Thin Films (다결정 $Ni_{83}Fe_{17}$ 합금박막에 대한 스핀파 특성의 열처리 효과)

  • 백종성;김약연;이성재;임우영;이수형
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.6
    • /
    • pp.968-973
    • /
    • 1995
  • In order to investigate the annealing effect for RF magnetron sputtered $Ni_{83}Fe_{17}$ thin films, we have studied the spin wave rehaviors by FMR after annealing the samples at $135^{\circ}C,\;225^{\circ}C$ in air and at $160^{\circ}C,\;220^{\circ}C,\;330^{\circ}C,\;390^{\circ}C\;and\;420^{\circ}C$ in argon gas for one hour respectively. In FMR spectra for the films annealed in argon gas and the assputtered film at perpendicular resonance, only odd numrer spin waves are observed. But even numrer spin waves are observed for the film annealed in air at $225^{\circ}C$ recause of the large difference retween both surface magnetic anisotropy. In the case of the sample annealed at $420^{\circ}C$ in argon gas, the spin waves are shifted toward high field, can due to the increase of saturation magnetization during annealing. The spacings retween the spin wave resonance fields are narrowed rapidly, this is thought that the magnetic homogeneity increased in the film after annealing at high temperature.

  • PDF

Analysis of coastal city flooding in 2D and 3D considering extreme conditions and climate change (극한 조건과 기후변화를 고려한 2차원 및 3차원 해안 도시 침수 해석)

  • Jaehwan Yoo;Sedong Jang;Byunghyun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.126-126
    • /
    • 2023
  • 최근 대한민국에서는 기후변화로 전국 각지에서 돌발성 호우와 태풍의 강도 및 발생빈도가 높아지고 있다. 이에 따라 주요 국가시설이 위치한 해안 도시의 2차원 3차원 모형을 통해 극한 조건하 침수 분석을 수행하였다. 먼저 해양수산부 "2019년 전국 심해설계파 보고서"를 기반으로 극치분포 중 Weibull 분포를 이용하여 극한 조건, 1,000년부터 1,000,000년 빈도의 재현기간의 파도 높이와 풍속을 계산하였다. 계산 결과를 SWAN(Simulating WAves Nearshore)의 입력값으로 해상에서 100m 간격의 파고 높이를 계산하였다. 이때 100m 간격으로는 방파제 지형을 정확히 해석하지 못하였기에, 상세파고 계산을 위한 Nesting 기법을 이용하여 20m 간격의 파고 결과를 도출하였고, 해안 도시 인근 해상에서 10.916m의 파고를 예측하였다. 또한, 예측된 파고를 이용해 EurOtop(2018) 매뉴얼의 경험식을 기반으로 연구 유역으로 유입되는 월류량 계산에 사용하였다. 결과로 16방위 중 SSE 방향, 1,000,000년 빈도 재현기간 조건에서 0.0306cms/m의 월파량을 예측했다. 예측된 자료를 바탕으로 2차원 침수해석은 FLO-2D 모형, 3차원 침수해석은 FLOW-3D 모형을 이용하였다. 2차원 침수해석 결과 주요 지점에서 0.18~0.33m의 침수가 예상되었고 3차원 침수해석 결과 동일한 지점에서 0.240~0.333m의 침수가 예상되었다. 모의 결과 2차원과 3차원 모형 간 침수 예측 결과가 0.3cm에서 6.1cm의 차이를 나타내어 모형 구축이 합리적으로 이뤄졌다고 판단하였으며 연구 유역에서는 침수가 예상된다는 결과를 도출하였다. 본 연구를 통해 기후변화에 따른 해안에 위치한 주요 도시지역과 국가 주요 시설물에 대한 침수해석을 실시하였고 분석결과를 생명과 재산을 보호하기 위한 대피계획 등 재난예방대책 수립에 활용할 수 있음으로 예상된다.

  • PDF

A Study on the Variation of Motion Characteristics in Small Vessels Navigation with Respect to Incident Angle (소형선박 운항 중 입사각에 따른 운동특성 변화 연구)

  • Dong-Hyup Youn;Lee-Chan Choi;Jung-Hwi Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.242-243
    • /
    • 2023
  • Different incident angles concerning ocean conditions and weather greatly influence small vessel navigation. Particularly for small vessels, different incident angles result in distinct motion characteristics closely related to stability. Based on actual coastal wave data, this study conducted simulations and experiments to analyze the motion characteristics of small vessels navigating in irregular waves. The analysis revealed that significant motions primarily occurred at lower speeds from the bow sea. In contrast, as the speed increased, the roll motions due to the bow sea decreased, but those due to the stern seas increased. Consequently, adjusting the incident wave angles according to vessel speed can enhance stability and navigational efficiency for small vessels.

  • PDF

Fireworks Modeling Technique based on Particle Tracking (입자추적기반의 불꽃 모델링 기법)

  • Cho, ChangWoo;Kim, KiHyun;Jeong, ChangSung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.102-109
    • /
    • 2014
  • A particle system is used for modeling the physical phenomenon. There are many traditional ways for simulation modeling which can be well suited for application including the landscapes of branches, clouds, waves, fog, rain, snow and fireworks in the three-dimensional space. In this paper, we present a new fireworks modeling technique for modeling 3D firework based on Firework Particle Tracking (FPT) using the particle system. Our method can track and recognize the launched and exploded particle of fireworks, and extracts relatively accurate 3D positions of the particles using 3D depth values. It can realize 3D simulation by using tracking information such as position, speed, color and life time of the firework particle. We exploit Region of Interest (ROI) for fast particle extraction and the prevention of false particle extraction caused by noise. Moreover, Kalman filter is used to enhance the robustness in launch step. We propose a new fireworks particle tracking method for the efficient tracking of particles by considering maximum moving range and moving direction of particles, and shall show that the 3D speeds of particles can be obtained by finding the rotation angles of fireworks. Also, we carry out the performance evaluation of particle tracking: tracking speed and accuracy for tracking, classification, rotation angle respectively with respect to four types of fireworks: sphere, circle, chrysanthemum and heart.

Seismic Studies on Ground Motion using the Multicomponent Complex Trace Analysis Method (다성분 복소 트레이스 분석법을 이용한 지진파 입자운동 연구)

  • Lee, So-Young;Kim, Ki-Young;Kim, Han-Joon
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.37-48
    • /
    • 2000
  • In order to investigate in-line ground motions caused by earthquakes, we examine the multicomponent complex trace analysis method (MCTAM) for the synthetic data and apply it to real earthquake data. An experimental result for synthetic data gives correct information on the arrival times, duration of individual phases, and approaching angles for body waves. Rayleigh waves are also easily identified with the MCTAM. A deep earthquake with magnitude of 7.3 was chosen to test various polarization attributes of ground motions. For P waves, instantaneous phase difference between the vertical and the in-line horizontal components ${\phi}(t)$, instantaneous reciprocal ellipticity ${\rho}(t)$, and approaching angle ${\tau}(t)$ are computed to be ${\pm}180^{\circ},\;0{\sim}0.25,\;and\;-30^{\circ}{\sim}-45^{\circ}$, respectively. For S waves, ${\phi}(t)$ tends to vary while ${\rho}(t)$ have values of $0{\sim}0.3\;and\;{\tau}(t)$ remains near vertical, respectively. A relatively low frequency signal registered just prior to the S wave event is interpreted as a P-wave phase based on its polarization characteristics. Velocities of P and S waves are computed to be 8.633 km/s and 4.762 km/s, and their raypath parameters 0.074 s/km and 0.197 s/km. Dynamic Poisson's ratio is obtained as 0.281 from the velocities of P and S waves.

  • PDF

Performance of Oscillating Water Column type Wave Energy Converter in Oblique Waves (사파중 진동수주형 파력발전장치의 성능평가)

  • Jin, Jiyuan;Hyun, Beom-Soo;Hong, Keyyong;Liu, Zhen
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.182-188
    • /
    • 2014
  • In an oscillating water column (OWC)-type wave energy conversion system, the performance of the OWC chamber depends on the chamber shape, as well as the incident wave direction and pressure drop produced by the turbine. Although the previous studies on OWC chambers have focused on wave absorbing performance in ideal operating conditions, incident waves do not always arrive normally to the OWC chamber in real sea conditions, especially in fixed devices. The present study deals with experiments and numerical calculations to investigate the effects of wave direction on the performance of the OWC chamber. The experiments were carried out in a three-dimensional wave basin for five different wave directions, including the effect of turbine using the corresponding orifice. The wave elevation inside the chamber was measured at the center point under various incident wave conditions. The numerical study was conducted by using a numerical wave tank-based volume-of-fluid model to compare the results with experimental data and to reveal the detailed flows around the chamber.

Oil Fence Durability Enhancement for Marine Environmental Protection : Improvement of Inspection Process (해양환경 보호를 위한 오일펜스의 내구성 향상 : 검정제도 개선 방향)

  • Jang, Pankil;Seo, Jeong Mog;Lee, Heejin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.731-736
    • /
    • 2021
  • Oil fences effectively prevent the spread of oil spilled in the sea, thereby reducing the damage to the marine environment. However, the fence is damaged by oil and structures at the accident site and is discarded. When incinerated disposal method for discarded fences, fine dust, and harmful materials are generated. Moreover, as a part of the damaged fence is dumped into the sea, it may cause secondary environmental pollution, such as microplastics. Therefore, in this study, durability was measured using the most common solid foam type oil fences. As a result, the reduction rate of after five days of contact was 13 % in seawater and 3 % in oil, affected by temperature changes. Thus, the durability of the fence should be improved because it is exposed to seawater and oil and affected by wind, light, and waves depending on the weather conditions. Therefore, we suggest a method to improve the oil fence inspection to strengthen the durability of the fence's fabric part.