• Title/Summary/Keyword: 파단하중

Search Result 274, Processing Time 0.113 seconds

Evaluation of Tensile Behaviors of Beam Splice with High Strength Bolts According to Steel Grades (강종에 따른 고력볼트 보 이음부 인장거동 평가)

  • Kim, Hee-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.129-137
    • /
    • 2020
  • In designing a high strength bolted beam splice using steel for building structures, it is necessary to present the appropriate steel grade selection criteria for how to determine the cover plate steel grade. This study examined the difference in tensile behavior according to the steel grades through static tensile tests simulating the beam member high strength bolt joints flange. For this purpose, the specimens were designed and fabricated with the main variables, such as the thickness, steel grade and the strength of flange and cover plate, which are expected to affect the splice strength and behavior. The tensile test results for a total of 48 specimens showed that the tensile-load capacity exceeded the design tensile strength applied with a nominal strength of steel in all specimens. When the design strength of the cover plate exceeded 1.25 times that of the flange plate, the flange plate governed the behavior of splice. The change in maximum tensile load due to the change in flange steel grade is not very large, but there is a difference in deformation. The test results confirmed that the steel grade and thickness of the cover plate were the main factors affecting the beam splice behavior.

Study on the Defect Improvement of Fuel Flow Proportioner Install Structure on Aircraft (항공기 연료흐름분배기 장착 구조물 결함개선 연구)

  • Choi, Hyoung Jun;Lee, Jin Won;Choi, Jae Ho;Park, Sung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.558-567
    • /
    • 2020
  • This study examined the defect characteristics of fuel flow proportioner-mounted structures to analyze the causes of structural defects during aircraft operation. System vibrations and single component vibrations that occur during aircraft operations are usually the cause of structural defects. The fuel flow proportioner causes a defect in the support structure due to the vibration caused by the pressure change caused by the sudden increase in the flow rate. Defects in the support structure of the fuel flow proportioner are not correlated directly with the cracking of the maneuver, and flight time according to aircraft operation analysis is related to the use of A/B. The structural reinforcement configuration was confirmed through static and life analysis of the cracks of the bracket mounted under the fuel flow proportioner for improvement of the defect. An analysis of the reinforcement revealed a minimum structural strength of +0.15. Structural life analysis confirmed that the stress acted on the site under 15Ksi. The fatigue life was confirmed to be more than 7,700 Cycles.

Lateral Strength of Double-Bolt Joints to the Larix Glulam according to Bolt Spacing (볼트 간격에 따른 낙엽송 집성재 이중 볼트접합부의 전단강도)

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • The lateral strength test of bending type was done to investigate the lateral capacity of the double bolt connection of domestic larix glulam according to bolt spacing. In the shear specimen, which is bolted connection in the inserted plate type, the hole of bolt was made, changing the diameter of bolt (12 mm and 16 mm), the number of bolt (single bolt : control and double bolt), the direction of bolt row (in parallel to grain : Type-A and in perpendicular to grain : Type-B) and the bolt spacing (Type-A : 4 d and 7 d and Type-B : 3 d and 5 d). Lateral capacity and failure mode of bolt connection were compared according to conditions. In prototype design (KBCS, 2000), the reduction factor of the allowable shear resistance that the bolt spacing is reduced was calculated. The results were as follows. 1) Bearing stress per bolt in the single and double bolt connection of Type-A was directly proportional to bolt diameter and bolt spacing. Bearing stress of Type-B decreased as bolt diameter was increased, and decreased by 2~10% when bolt diameter was increased. 2) In the single bolt connection and the double bolt connection of Type-A, the splitted failure was formed in the edge direction. When the bolt spacing was 3 d in Type-B, bolt was yielded more in the part of tension than in the part of compression, and the splitted failure started at the bolt in the part of tension. In the 5 d spacing specimen, the bolt in the part of tension was yielded similarly to bolt in the part of compression, and the splitted failure started in the part of compression. 3) In the prototype design, the reduction factor was calculated by non-dimensionizing the yielding load in the standard of bolt spacing (Type A : 7 d and Type B : 5 d). In 12 mm bolt connection, the reduction factor of bolt spacing 4 d (type-A) and single bolt connection was 0.87 and 0.55, respectively, and the reduction factor of bolt spacing 3 d (Type-B) and single bolt connection was 0.91 and 0.55, respectively. In 16 mm bolt connection, the reduction factor of bolt spacing 4 d (type-A) and single bolt connection was 0.96 and 0.76, respectively, and the reduction factor of bolt spacing 3 d (Type-B) and single bolt connection was 0.91 and 0.77, respectively.

Strength and Deformation Capacities of Short Concrete Columns with Circular Section Confined by GFRP (GFRP로 구속된 원형단면 콘크리트 단주의 강도 및 변형 능력)

  • Cho, Soon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.121-130
    • /
    • 2007
  • To investigate the enhancement in strength and deformation capacities of concrete confined by FRP composites, tests under axial loads were carried out on three groups of thirty six short columns in circular section with diverse GFRP confining reinforcement. The major test variables considered include fiber content or orientation, wrap or tube type by varying the end loading condition, and continuous or discontinuous confinement depending on the presence of vortical spices between its two halves. The circumferential FRP strains at failure for different types of confinements were also investigated with emphasis. Various analytical models capable of predicting the ultimate strength and strain of the confined concrete were examined by comparing to observed results. Tests results showed that FRP wraps or tubes provide the substantial increase in strength and deformation, while partial wraps comprising the vertical discontinuities fail in an explosive manner with less increase in strength, particularly in deformation. A bilinear stress-strain response was observed throughout all tests with some variations of strain hardening. The failure hoop strains measured on the FRP surface were less than those obtained from the tensile coupons in all tests with a high degree of variation. In overall, existing predictive equations overestimated ultimate strengths and strains observed in present tests, with a much larger scatter related to the latter. For more accuracy, two simple design- oriented equations correlated with present tests are proposed. The strength equation was derived using the Mohr-Coulomb failure criterion, whereas the strain equation was based on entirely fitting of test data including the unconfined concrete strength as one of governing factors.

COMPARISON FOR THE RETENTION OF CASTING CROWN AND CEMENT THICKNESS FOLLOWING VARIOUS CEMENTS (수종의 세멘트에 따른 주조금관의 유지력 및 세멘트 두께의 비교)

  • Lee, Cheong-Hee;Jo, Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.1
    • /
    • pp.37-46
    • /
    • 1994
  • The purpose of this study was to evaluate the effect of various cements on the retention of casting crown and the cement film thickness. To evaluate the retention of crown, thirty maxillary premolars were used and prepared to largely same dimension. According to the routine method, Non-precious metal crowns were made. The teeth and the metal crowns were divided into three groups and cemented under 5kg static pressure. Group I was composed of 10 teeth and 10 metal crowns and was cemented with zinc phohsphste cement. Group II was composed of 10 teeth and 10 metal crowns and was cemented with Panavia-EX cement. Group III was composed of 10 teeth and 10 metal crowns and was cemented with All-Bond & composite resin cement. After 5 days, the cemented specimens were mounted and the failure loads were measured by an Instron Universal Testing Machine. To evaluate the cement film thickness. 5 metal teeth and 5metal crowns from a prepared maxillary premolar were made. Two marks were flawed on the margin part of each surface at 4-surfaces of each specimen(one mark : crown, the other : metal tooth) and were measured the width with SEM photograph(80 sheets) before and after cementation(Panavia-EX, All-Bond cement, & ZPC) was made. Differences of the widths of marks between before and after were measured, and differences from 4-surfaces of a specimen cemented with a cement were measured and calculated. The results were as follows ; 1. There was a statistically significant difference between the failure loads of group III and the others(p<0.05). 2. There was a statistically significant difference between the cement film thickness of group III and the others(p<0.05).

  • PDF

Damping Ratios for Seismic Design of SC Structures (SC구조의 내진설계를 위한 감쇠비)

  • Lee, Seung-Joon;Kim, Won-Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.487-496
    • /
    • 2010
  • The structural damping ratios for seismic design of nuclear power plant structures are specified in Regulatory guide 1.61 of the United States NRC for RC structures of 4%(OBE) and 7%(SSE), and for steel structures of 3%(OBE) and 4%(SSE), but not for steel-plate concrete (SC) structures that have been developed recently. The objective of this study is to investigate the damping ratios of SC structures by identifying the relative differences in the damping ratios between RC and SC structures. An experimental study was performed on four specimens, RC-S, RC-M, SC-S and SC-M, where S stands for shear-governed and M for moment-governed. The conducted method was free vibration testing by rupturing a brittle steel plate that linked the actuator and the mass center. The test results were analyzed to determine fundamental frequencies and damping ratios at various load levels. By examining the relative differences in damping ratios of four specimens, it is proposed for SC structures to use the same damping ratio of 4% as RC one at OBE, but 1% less damping ratio than RC one resulting in 6% at SSE.

The Inelastic Behavior of High Strength Reinforced Concrete Tall Walls (고강도 철근콘크리트 고층형 내력벽의 비탄성 거동에 관한 실험 연구)

  • 윤현도;정학영;최창식;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.3
    • /
    • pp.139-148
    • /
    • 1995
  • The test results from three one fourth scale models using high strength Reinforced Concrete $f_x=704\;kg/cm^2,\;f_y=5.830\;kg/cm^2$ are presented. Such specimens are considered to represent the critical 3 storics of 60-story tall building of a structural wall system in area of high seismicity respectively. They are tested under inplane vertical and horizontal loading. The main varlable is the level of axial stress. The amounts of vertical and horizontal reinforcement are identical for the three walls testcd. The cross-section of all walls is barbell shape. The aspectratio($h_w/I_w$) of test specimen is 1.8. The aim of the study is to investigate the effects of levels of applied axial stresses on the inelastic behavior of high-strength R /C tall walls. Experimental results of high strength R /C tall walls subjected to axial load and simulated sels rnic loading show that it is possible to insure a ductlle dominant performance by promotmg flex ural yielding of vertical reinforcement and that axial stresses within $O.21f_x$ causes an increase in horizontal load-carrying capacity, initial secant st~ffness characteristics, but an decrease in displacement ductility. energy dissipation index and work damage index of high strength K /C tall walls

Joining High-Strength Steel and Al6061 Sheet Using Hole Clinching Process (Hole 클린칭을 이용한 고장력강판과 Al6061 이종소재의 접합)

  • Ahn, Nam-Sik;Lee, Chan-Joo;Lee, Jung-Min;Ko, Dae-Cheol;Lee, Seon-Bong;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.691-698
    • /
    • 2012
  • The joining of aluminum and HSS (high-strength steel) by the conventional clinching process is limited by the low formability of HSS. Defects in the clinching joint, such as necking of the upper sheet, cracks, and lack of interlocking, are produced by the different ductility properties of HSS and aluminum. In this study, we propose the hole clinching process for joining Al6061 and SPFC440, in which deformation of SPFC440 is avoided by drilling a hole in the SPFC440. The dimensions of the interlocking in the hole-clinched joint necessary to provide the required joint strength were determined. Based on the volume constant of the hole clinching process, the shapes of the tools were designed by finite element (FE)-analysis. A hole clinching experiment was performed to verify the proposed process. A cross-section of the joint showed good agreement with the results of the FE-analysis. The lap shear strength was found to be 2.56 kN, which is higher than required joint strength.

A Study on the Effective Length Factor for Steel Plate-Concrete Structures using Cementless Concrete (무시멘트 콘크리트를 활용한 강판콘크리트 구조의 유효좌굴길이 계수 분석에 관한 연구)

  • Han, Myoung-Hwan;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.661-671
    • /
    • 2018
  • Domestic studies on steel plate concrete structures have focused on nuclear structures with high strength. In this study, the SC structure was applied to the general structure, and the SC structure that is advantageous in terms of safety and construction was limited to a special structure. As a basic study for applying SC, this paper proposes basic design information of a SC structure applying cement concrete to plan the structure, which is suitable for eco - friendliness by replacing concrete cement, an important factor in a SC structure, with blast furnace slag. This study examined the compression characteristics and the effective length factor under central compression load. To calculate the effective length factor, the Euler column theory was applied without applying plate theory. The effective length factor was calculated from the yield strength of the steel plate, buckling of the steel plate, and the point at which the concrete was broken. In addition, this study examined whether the maximum compressive strength meets the national and international reference equations with the slenderness ratio (B/t) as a parameter. By analyzing the buckling of the specimen by applying the column theory and selecting the strain of the measured steel plate, the effective length factor was analyzed and compared with the value presented in the reference equation.

Flexural Behavior of RC Beams Strengthened with Steel Strand and Carbon Fiber Sheet (강연선 및 탄소섬유쉬트로 보강된 철근 콘크리트 보의 휨거동 특성)

  • 양동석;박선규;이용학
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.216-222
    • /
    • 2002
  • With deterioration of the nation's infrastructure comes the growing, need for effective means of rehabilitating structures. Possibly one for the most challenging tasks is to upgrade the overall capacity of concrete structure. Therefore, considerable efforts are still being made to develop new construction materials. Rehabilitation of damaged RC structures occasionally requires the removal and replacement of concrete in the tension zone of the structural members. Typical situation where the tension zone repair is necessary is when the concrete in the tension zone in beams or slabs has spalled off as a result of corrosion in the bottom reinforcing bars or due to extensive fire. The rehabilitation of such conditions normally involves the removal of the concrete beyond the reinforcement bars, cleaning or replacing the tensile bars and reinstatement of concrete to cover the steel bars the original shape and size. This study focused on the flexural behavior of reinforced concrete beams strengthened by steel strand and carbon fiber sheet in the tension zone. The properties of beams are 15$\times$25 cm rectangular and over a 200cm span. Test parameters in this experimental study were strengthening methods, jacking volume, the number of sheet. We investigated the flexural behavior of simply supported RC beams which are strengthened with the carbon fiber sheet, monotonic loads. Attention is concentrated upon overall bending capacity, deflection, ductility index, failure mode and crack development of repaired and rehabilitated beams.