• Title/Summary/Keyword: 파괴인성 분석

Search Result 114, Processing Time 0.029 seconds

Fracture Mechanical Characterization of Bi-material Interface for the Prediction of Load Bearing Capacity of Composite-Steel Bonded Joints (복합재료-탄소강 접착제 결합 조인트의 하중지지 능력 예측을 위한 이종 재료 접합 계면의 파괴 역학적 분석)

  • Kim, Won-Seok;Shin, Kum-Chel;Lee, Jung-Ju
    • Composites Research
    • /
    • v.19 no.4
    • /
    • pp.15-22
    • /
    • 2006
  • One of the primary factors limiting the application of composite-metal adhesively bonded joints in structural design is the lack of a good evaluation tool for the interfacial strength to predict the load bearing capacity of boned joints. In this paper composite-steel adhesion strength is evaluated in terms of stress intensity factor and fracture toughness of the interface corner. The load bearing capacity of double lap joints, fabricated by co-cured bonding of composite-steel adherends has been determined using fracture mechanical analysis. Bi-material interface comer stress singularity and its order are presented. Finally stress intensities and fracture toughness of the wedge shape bi-material interface corner are determined. Double lap joint failure locus and its mixed mode crack propagation criterion on $K_1-K_{11}$ plane have been developed by tension tests with different bond lengths.

Mechanical Properties and Microstructure of Dental Heat-Pressable Glass-Ceramics (치과용 열가압 글라스 세라믹스의 기계적 성질과 미세구조)

  • 이해형;이병택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.143-150
    • /
    • 2004
  • Biaxial flexure strength (ball-on-3-ball) and fracture toughness (indentation microfracture) of heat-pressable glass-ceramics for dental use were investigated in this study. Crystal phase and microstructure of glass-ceramics were analyzed by XRD. SEM, and TEM. Crack propagation in specimens was not effectively arrested by dispersed crystalline particles. However, higher degree of crystallization probably contributes to strengthening of glass-ceramics. Better clinical reliability can be expected from lithium disilicate glass-ceramic because of its significantly higher biaxial flexure strength and fracture toughness.

Effect of water storage on the fracture toughness of dental resin cement used for zirconia restoration (수분이 지르코니아 수복물 전용 레진시멘트의 파괴인성에 미치는 영향에 관한 연구)

  • Goo, Bon-Wook;Kim, Sung-Hun;Lee, Jai-Bong;Han, Jung-Suk;Yeo, In-Sung;Ha, Seung-Ryong;Kim, Hee-Kyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.4
    • /
    • pp.312-316
    • /
    • 2014
  • Purpose: The aim of this study was to compare the fracture toughness of currently available resin cements for zirconia restorations and evaluate the effect of water storage on fracture toughness of those resin cements. Materials and methods: Single-edge notched specimens ($3mm{\times}6mm{\times}25mm$) were prepared from three currently available dual cure resin cements for zirconia restorations (Panavia F 2.0, Clearfil SA luting and Zirconite). Each resin cement was divided into four groups: immersed in distilled water at $37^{\circ}C$ for 1 (Control group), 30, 90, or 180 days (n=5). Specimens were loaded in three point bending at a cross-head speed of 0.1 mm/s. The maximum load at specimen failure was recorded and the fracture toughness ($K_{IC}$) was calculated. Data were analyzed using one-way ANOVA and multiple comparison $Scheff{\acute{e}}$ test (${\alpha}$=.05). Results: In control group, the mean $K_{IC}$ was $3.41{\pm}0.64MN{\cdot}m^{-1.5}$ for Panavia F, 2.0, $3.07{\pm}0.41MN{\cdot}m^{-1.5}$ for Zirconite, $2.58{\pm}0.30MN{\cdot}m^{-1.5}$ for Clearfil SA luting respectively, but statistical analysis revealed no significant difference between them. Although a gradual decrease of $K_{IC}$ in Panavia F 2.0 and gradual increases of KIC in Clearfil SA luting and Zirconite were observed with storage time, there were no significant differences between immersion time for each cement. Conclusion: The resin cements for zirconia restorations exhibit much higher $K_{IC}$ values than conventional resin cements. The fracture toughness of resin cement for zirconia restoration would not be affected by water storage.

Processing and properties of the $SiO_2-ZrO_2-Na_2O-B_2O_3$glass ceramics ($SiO_2-ZrO_2-Na_2O-B_2O_3$계 결정화 유리의 제조와 물성)

  • 안주삼;이원유;채병준;최승철;박영선
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.518-523
    • /
    • 1998
  • The fracture toughness and hardness of 62 %$SiO_2-19%ZrO_2-9%Na_2O-10%B_2O_3$(wt%) glass ceramics system were investigated. As a result of DTA study to find crystallization temperature, an exothermic peak near $820^{\circ}C$ was observed. The optimum nucleation temperature and the optimum crystal growth temperature were determined by XRD and SEM analysis, and were approximately $650^{\circ}C$, $840^{\circ}C$ respectively. The fracture toughness of this zirconia glass ceramics was determined by Vickers Indentation Method. The hardness value was not changed with increasing of the heat treatment temperature, but fracture toughness value was increased up to $1.8 MPa{\cdot}m^{1/2}$ at $840^{\circ}C$, with increasing of heat treatment temperature.

  • PDF

Estimation of Elastic Plastic Behavior Fracture Toughness Under Hydrogen Condition of Inconel 617 from Small Punch Test (Inconel 617 재료의 소형펀치 실험을 이용한 수소취화처리재의 탄-소성 거동 및 파괴인성 유추)

  • Kim, Nak Hyun;Kim, Yun Jae;Yoon, Kee Bong;Ma, Young Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.753-760
    • /
    • 2013
  • The hydrogen embrittlement of metallic materials is an important issue from the viewpoint of structural integrity. In this regard, the estimation of mechanical properties and fracture toughness under hydrogen conditions provides very important data. This study provides an experimental validation of the approach for simulating the small punch of Inconel 617 using finite element damage analysis, as recently proposed by the authors, and applies an inverse method for the determination of the constitutive tensile behavior of materials. The mechanical properties obtained from the inverse method are compared with those obtained from the tensile test and validated. The mechanical properties and fracture toughness are predicted by using the inverse method and finite element damage analysis.

Estimation of fracture toughness of X65 and X70 steels by DWTT (X65 및 X70강 가스배관의 DWTT 및 파괴인성평가)

  • Cho, Ye-Won;Song, Young-Ho;Kim, Jeong-Min;Kim, Woo-Sik;Park, Joon-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.54-64
    • /
    • 2012
  • DWTT (Drop Weigh Tearing Test) is one critical method that can exhibit the fracture properties of line pipe steel, since it estimates the properties with real pipe steel. In this study, the ductile portion, inverse fracture ratio and absorbed energy of API X65 and X70 line pipe steels were estimated with temperature variation. Both steels showed that the ratio of ductile area and absorbed energy were decreased with respect to decreasing the test temperature. However, while the ductile fracture behavior exhibited until $-40^{\circ}C$ for the X70 steel, but it showed until $-30^{\circ}C$ for the X65 steel. The fracture properties were discussed with respect to test temperatures.

A Study on the Effect of Adhesion Condition on the Mode I Crack Growth Characteristics of Adhesively Bonded Composites Joints (복합재 접착 체결 구조의 접착 상태가 모드 I 균열 성장 특성에 미치는 영향에 대한 연구)

  • No, Hae-Ri;Jeon, Min-Hyeok;Cho, Huyn-Jun;Kim, In-Gul;Woo, Kyeong-Sik;Kim, Hwa-Su;Choi, Dong-Su
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.323-329
    • /
    • 2021
  • In this paper, the characteristics of fracture in mode I loading were analyzed for adhesively bonded joints with non-uniform adhesion. The Double Cantilever Beam test was performed and mode I fracture toughness was obtained. In the case of non-uniform adhesively bonded joints, the stable crack growth sections and unstable crack growth section were shown. The fracture characteristics of each section were observed through the load-displacement curve of the DCB test and the fracture surface of the specimen. Finite Element Analysis was performed at the section based on segmented section by crack length measured through the test and using the mode I fracture toughness of each section. Through DCB test results and finite element analysis results, it was confirmed that the fracture behavior of specimens with non-uniform adhesion can be simulated.

Effect of CaO on Mechanical Properties of SiC materials for spectacle lens cutting (CaO첨가가 렌즈 절삭용 실리콘카바이드재료의 기계적 특성에 미치는 영향)

  • Lee, Young-Il;Shin, Dong-Sung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.2
    • /
    • pp.19-23
    • /
    • 2007
  • An investigation of the effects of CaO on microstructure and properties of SiC materials for spectacle lens cutting was described. Four materials with different composition have been fabricated by hot-pressing at $1,880^{\circ}C$ for 4h using CaO. SEM analysis and XRD of the surface of samples were carried out. Typical fracture toughness of materials for spectacle lens cutting was $5.4MPa{\cdot}m^{1/2}$. Also, The hardness of materials for spectacle lens cutting was relatively dependent on the density.

  • PDF

Evaluation of Crack Resistance Properties on Particulate Reinforced Composite Propellant using Digital Image Correlation (DIC에 의한 입자강화 복합재 추진제의 균열저항 특성평가)

  • Na, Seonghyeon;Choi, Hoonseok;Oh, Kwangkeun;Kim, Jaehoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.26-32
    • /
    • 2015
  • In this study, it is evaluated for fracture toughness to analyze crack resistance properties of particulate reinforced composite propellant. Fracture toughness test using WST specimen is conducted by temperature conditions from $50^{\circ}C$ to $-60^{\circ}C$. Evaluation method for fracture toughness calculated using an equation suggested by ASTM E399 with linear elastic fracture mechanics. From these result, splitting loads and stress intensity factors of propellant increase according to decrease of test temperature. Also, the strain fields of specimen surface using digital image correlation increase as temperature decreased from $50^{\circ}C$ to $-40^{\circ}C$, but it sharply decreases at $-60^{\circ}C$ because of brittle behavior.

Mechanical properties of materials for spectacle lens cutting containing SrO as Ophthalmic Dispensing Glasses (조제가공을 위한 SrO 첨가 안경렌즈 절삭용 재료의 기계적 특성)

  • Lee, Young-Il
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.2
    • /
    • pp.197-202
    • /
    • 2004
  • The aim of this work is to improve the mechanical properties of materials for glasses lens cutting at $1920^{\circ}C$ using SrO as sintering additive. The heating rate was $15^{\circ}C/min$ and the cooling rate about $25^{\circ}C/min$ from the sintering temperature to $1000^{\circ}C$. SEM analysis and XRD of the surface of samples were carried out. Microstructures of sintered materials were strongly dependent on the composition of sintering additives. The fracture toughness and hardness were increased by increasing the SrO. Typical fracture toughness and hardness of materials for glasses lens cutting were $5.6{\pm}0.3MPa{\cdot}m^{1/2}$ and $16.2{\pm}0.5GPa$, respectively.

  • PDF