• Title/Summary/Keyword: 파고 기준

Search Result 69, Processing Time 0.03 seconds

Development of Wave Monitoring System using Precise Point Positioning (PPP 기반 항법 알고리즘을 이용한 파고 계측시스템 설계 및 구현)

  • Song, Se Phil;Cho, Deuk Jae;Park, Sul Gee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1055-1062
    • /
    • 2015
  • A GPS based wave height meter system is proposed in this paper. The proposed system uses a dual-frequency measurements, a precise GPS satellite information and a PPP-based navigation algorithm to estimate the position with high accuracy. This method does not need to receive corrections from the reference stations. Therefore, unlike RTK based wave meter, regardless of the distance to the reference stations, it is possible to estimate position with high accuracy. This system is very simple and accurate system, but accelerometer-based system requires the other sensors such as GPS. Because position error is accumulated in the accelerometer system and must be removed periodically for high accuracy. In order to get the measurements and test the proposed wave height meter system, a buoy equipped with the test platform is installed on the sea near by Jukbyeon habor in Uljin, Korea. Then, to evaluate the performance, compares built-in commercial wave height meter with proposed system.

Basic Study to Establish Marine Activity Criteria Based on the Seakeeping Performance of Less Than 10-tons Fishing Vessels(I) (내항성능 기반 10톤 미만 어선의 해양활동 기준 마련 기초 연구(I))

  • Choi, Gwang-Young;Song, Chae-Uk;Park, Young-Soo;Park, Jun-Bum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.965-972
    • /
    • 2022
  • This is a basic study to establish marine activity criteria based on the seakeeping performance of less than 10-tons fishing vessels. These vessels account for approximately 95% of Korea's currently registered fishing vessels, and accidents and loss of life are also occurring during marine activities such as navigation, and fishing. Accordingly, the Ministry of Oceans and Fisheries has set a regulation of vessel traf ic control to restrict the operation of fishing vessels when the high seas watch takes effect, but it is applied equally without criteria according to the ship ton level and wave height; therefore, many differences may exist in ship fluctuations. Because the fluctuation of the ship owing to the wave height can be a factor in marine accidents by reducing the sense of boarding and performance of equipment, the seakeeping performance must be reviewed during waves to secure safe marine activities such as navigation and fishing. However, the review for the fishing vessel of established marine activity criteria based on the seakeeping performance is insufficient. Accordingly, the seakeeping performance was evaluated for a 10-ton class (G/T 9.77 tons) fishing vessel in Korea, and the level of marine activity according to the significant wave height and ship speed was interpreted by applying the operation and survival of the established seakeeping performance criteria. The analysis results indicated that the roll of the ship exceeded the operation criteria from 0.4m and the survival criteria from 2.2m. The pitch of the ship exceeded the operation criteria from 1.7m and did not exceed the survival criteria until 3.0m. However, the rolling exceeding the survival criteria from 2.2m may not be safe. Therefore, fishing vessels with less than 10-tons can leave before the high seas watch takes effect. However, they did not satisfy the criteria for evaluating the performance of the sea in relation to marine activities. Although this study was limitedly evaluated for 10-ton fishing vessels, it is expected to be of great help in preparing marine activity criteria.

Evaluation of Effective Working Days in a Harbor Considering Harbor Resonance and Moored Ship Motion (항만공진주기와 선박동요량을 고려한 항만가동율 산정)

  • Kwak, Moonsu;Moon, Yongho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.14-24
    • /
    • 2015
  • This study proposed an estimation method of allowable wave height for loading and unloading of the ship and evaluation of effective working days considering moored ship motion that is affected by sip sizes, mooring conditions, wave periods and directions. The method was examined validity by comparison with wave field data at pier $8^{th}$ in Pohang New Harbor. The wave field data obtained with wave height of 0.10~0.75 m and wave period of 7~13 s in ship sizes of 800~35,000 ton when a downtimes have occurred. On the other hand, the results of allowable wave height for loading and unloading of the ship in this method have obtained with wave heights of 0.19~0.50 m and wave periods of 8~12 s for ship sizes of 5,000, 10,000 and 30,000 ton. Thus this method well reproduced the field data respond to various a ship sizes and wave periods. And the results of this in Korea are didn't respond to various the ship sizes and wave periods, and we h method tended to decrease in 16~62 percent when have considered long wave, and it is decreased in 0~46 percent when didn't consider long wave than design standards in case of the ship sizes of 5,000~30,000 ton, wave period of 12 s and wave angle of $75^{\circ}$. The allowable wave heights for loading and unloading of the ship proposed by design standards in Korea have found that overestimated on smaller than 10,000 ton. On the other hand, the rate of effective working days considering ship motion at pier $8^{th}$ in Pohang New Harbor reduced in 6.5 percent when compare with the results without considering ship motion.

A Study on Calibration of Underestimated Wave Heights Measured by Wave and Tide Gauge (WTG) (저평가된 수압식 파고계(WTG) 관측 파고값 보정방안 연구)

  • Jeong, Weon Mu;Chang, Yeon S.;Oh, Sang-Ho;Baek, Won Dae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.296-306
    • /
    • 2020
  • It has been reported that the wave heights measured by Wave and Tide gauges (WTG) have been underestimated, and thus it is important to improve its measuring accuracy for enhancing estimation of harbor tranquility. In this study, the significant wave heights from WTG were calibrated using measured data from AWAC and Waverider buoys moored at the same four locations with the WTG. It was observed that the product of significant wave height and peak wave period, HT, was not underestimated but linearly proportional between the measurements by two instruments. This linearity was applied to develop 3rd order polynomial functions that best represented the relationship between HT and significant wave heights measured by WTG. These functions were then applied to calibrate the WTG significant wave heights that were lower than 0.7 m, the critical value established for the low waves in this study. The results showed that the linearity between the AWAC (or Waverider buoy) and calibrated wave heights were improved, and the magnitude of underestimated WTG wave heights were increased to be more realistic. The results of this study are expected to be effectively applied for other data sets obtained by WTG only, to increase the observation accuracy of WTG and to improve the estimation of harbor tranquility.

A Study to Improve the Operation Criteria by Size of Ship in Ulsan Tank Terminal (울산항 위험물 취급부두의 선박크기별 운용기준 개선방안에 관한 연구)

  • Kim, Seungyeon;Kim, Jongsung;Kim, Youngdu;Lee, Yunsok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.639-646
    • /
    • 2016
  • In order to establish an operational standard based on ship size, this study considered a specific safety management plan for Ulsan along with international standards, analyzed the results of mooring safety assessment at four vulnerable piers and suggests cargo stoppage and emergency unberthing standards as follows. In accordance with ship characteristics, ships of less than 10,000 tons are recommended to limit their activities for wind speeds of 18-21 m/s and wave heights of 1.0-1.5 m. Ships from 10,000-50,000 tons are recommended to observe wind speeds of 17-20 m/s and wave heights of 1.2-1.5 m, while, ships of 50,000-100,000 tons are recommended wind speeds of 15-19 m/s and wave heights of 1.5 m. Ships of more than 100,000 tons are recommended wind speeds of 14-18 m/s and wave heights of 1.5 m.

A Study on Estimation of Allowable Wave Height for Loading and Unloading of the Ship Considering Ship Motion (계류선박의 동요량을 고려한 하역한계파고 산정 방법에 관한 연구)

  • Kwak, Moon Su;Moon, Yong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.873-883
    • /
    • 2014
  • This study proposed an estimation method of allowable wave height for loading and unloading of the ship considering ship motion that is affected by ship sizes, mooring conditions, wave periods and directions. The method was examined validity by comparison with wave field data at pier $8^{th}$ in Pohang new harbor. The wave field data obtained with wave height of 0.10~0.75m and wave period of 7~13s in ship sizes of 800~35,000ton when a downtimes have occurred. On the other hand, the results of allowable wave height for loading and unloading of the ship in this method have obtained with wave heights of 0.19~0.50m and wave periods of 8~12s for ship sizes of 5,000, 10,000 and 30,000ton. Thus this method well reproduced the field data respond to various a ship sizes and wave periods. And the results of this method tended to decrease in 16~62% when have considered long wave, and it is decreased in 0~46% when didn't consider long wave than design standards in case of the ship sizes of 5,000~30,000ton, wave period of 12s and wave angle of $75^{\circ}C$. The allowable wave heights for loading and unloading of the ship proposed by design standards are didn't respond to various the ship sizes and wave periods, and we have found that the design standards has overestimated on smaller than 10,000ton.

Analysis of Electrical Characteristics of CCFL Exit Light (CCFL유도등의 전기적 특성 분석)

  • Jung, Jong-Jin
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.184-193
    • /
    • 2021
  • Purpose: In this study, since the operation principle of the CCFL Exit light is the same as that of general lighting equipment, the characteristics of the CCFL Exit light were analyzed by deriving test items that can affect the characteristics of the light source from the KS standard, which is the standard for lamp ballast performance certification of general lighting equipment. Method: The samples used in the experiment were performed on products of two manufacturers for each size, such as large, medium, and small, and the test items were power factor, crest factor, and current harmonic distortion. Result: As a result of the experiment, the power factor showed a value between 0.4 and 0.6 in all samples, which was smaller than the 0.9 value set by KS. The crest factor ranged from 3.6 to 3.7 for large, 4.4 to 4.7 for medium, and 3.5 to 3.7 for small. It showed a value more than two times higher than the KS standard of 1.7. Current total harmonic distortion ranged from 81% to 110%, and considering that the KS standard was less than 20%, it could be confirmed that all samples had a value significantly exceeding the KS standard. Conclusion: The crest factor and current total harmonic distortion may affect the temperature rise of the light source and the burnout of the device. When developing an exit light, if this item is developed within the scope of the KS standard, the quality improvement and maintenance of the exit light will be greatly improved.

Review of the Improvement of the Estimation Method of Harbor Tranquility (항만정온도 추정방법 개선방안 검토)

  • Jeong, Weon Mu;Ryu, Kyong-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.6
    • /
    • pp.397-404
    • /
    • 2014
  • In Korea, harbor tranquility is generally estimated by using both methods of investigating harbor calmness under abnormal wave condition and evaluating the harbor serviceability. The efficiency of the former method is questionable as the tranquility of a harbor is judged by a wave height criterion that is arbitrarily determined without rational basis. In case of the latter method, the utilization rate of a harbor is estimated by using the exceedance probability of wave height or the distribution of wave heights and periods that is obtained from longterm measured or hindcasted wave data. Use of long-term data is desirable in order to guarantee the accuracy of the exceedance probability. Meanwhile, the criterion for determining maximum allowable wave height for cargo handling works is too simple and has limitations for being used in an actual field condition. Problems of existing method for estimating harbor tranquility were verified by the wave observation data in Busan New Port. And the importance of the field observation data was emphasized. It is necessary to perform long-term wave monitoring inside and outside of major ports in Korea in order to establish more advanced standard for evaluating harbor tranquility based on such observed wave data.

Estimation of Harbor Operating Ratio Based on Moored Ship Motion (계류선박의 동요에 기초한 항만가동률 산정)

  • Kwak, Moonsu;Chung, Jaewan;Ahn, Sungphil;Pyun, Chongkun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.651-660
    • /
    • 2006
  • Although a harbor may be constructed with calmness in harbor in mind, which satisfies the design standard, it is frequently reported that the motion of moored ships disrupt the cargo handling. This is because of current design standard, which only deals with the wave height in the decision making process of cargo handling, and, now, a new kind of estimation method of operating ratio for calmness based on the motion of moored ship is in need. In this research, a computational method that analyses the harbor operation rate in harbor was put forward by considering the relation of allowable quantity of motion for cargo handling and the computation of the motion of moored ship at wharf by using moored ship motion analysis model. Here, a new estimetion method was applied at Onsan harbor, and it was compared with the current estimation method, and, then, the difference between the two methods was showed. The harbor operating ratio gained by a new method was dropped by 2~11% at ENE and NE directions when it was compared with the operating ratio based on the current design standard. However, when a harbor structure layout is to be designed, a harbor operating ratio test according to the wave height and a harbor operation rate test, which considers the motion of moored ship, are to be run side by side at a harbor designing process.