• Title/Summary/Keyword: 파고변동율

Search Result 6, Processing Time 0.022 seconds

Pattern Making of the Flared Skirt According to the Lower Body Somatotype of the 20's Women (20대 여성의 하반신 체형 유형에 따른 플레어스커트의 패턴 설계)

  • Lee, Youn-Soon;Ryu, Ji-Hyun;Kim, Kyung-A
    • Fashion & Textile Research Journal
    • /
    • v.10 no.5
    • /
    • pp.660-667
    • /
    • 2008
  • The purpose of this study was to modify a Flared Skirt for women according to the somatotype of lower body. The subjects for the wear test were 3 students, who were in $mean{\pm}1{\sigma}$ each somatotype. The results of this study are as follows: First, the Flared Skirt pattern was modified according to each type. The front waist line rising measurement proposed for type 1 and type 2 were 0.5cm, because of lower front silhouette with waist shape. The back waist line rising measurement proposed for type 2 was 1cm and type 3 was 0.5cm, because of lower back shape with hip. Second, the wave-height of nodes were regular at front and back in type 1. Also, the wave-height of nodes were evenly distributed side and center. The variation ratio of wave-height of back nodes were lower than existing pattern in type 2 and type 3. It means the variation ratio of wave-height of back nodes were regular in modification pattern. Altogether, modification patterns were more regular and lower than existing pattern in the number of nodes, the distribution ratio of nodes, the wave-height of node, the variation ratio of wave height of nodes.

Variation Characteristic of Wave Field around 2-Dimensional Low-Crested-Breakwaters (2차원저천단구조물(LCS)의 주변에서 파동장의 변동특성)

  • Lee, Jun Hyeong;Jung, Uk Jin;Bae, Ju-Hyun;Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.294-304
    • /
    • 2019
  • This study evaluates the variation characteristics of wave fields (transmission ratio, wave height, time-averaged velocity and time-averaged turbulent kinetic energy) for two-dimensional low-crested structure by olaFlow model based on the two-phases flow numerically. In addition, the present numerical results are verified by comparing with the existing experimental results. The time-averaged velocity, one of various numerical results is formed counterclockwise circulating cell on the front of structure and is occurred strong uni-directional flow on onshore side. It is shown that these are closely related to the factors such as overtopping, etc.

Analytical Solutions for Predicting Movement Rate of Submerged Mound (수중둔덕의 이동율 예측을 위한 해석해)

    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.4
    • /
    • pp.165-173
    • /
    • 1998
  • Analytical solutions to predict the movement rate of submerged mound are derived using the convection coefficient and the joint distribution function of wave heights and periods. Assuming that the sediment is moved onshore due to the velocity asymmetry of Stokes' second order nonlinear wave theory, the micro-scale bedload transport equation is applied to the sediment conservation. The nonlinear convection-diffusion equation can then be obtained which governs the migration of submerged mound. The movement rate decreases exponentially with increasing the water depth, but the movement rate tends to increase as the spectral width parameter, $ u$ increases. In comparison of the analytical solution with the measured data, it is found that the analytical solution overestimates the movement rate. However, the agreement between the analytical solution and the measured data is encouraging since this over-estimation may be due to the inaccuracy of input data and the limitation of sediment transport model. In particular, the movement rates with respect to the water depth predicted by the analytical solution are in very good agreement with the estimated result using the discritization technique with the hindcast wave data.

  • PDF

Development of High Stable Instrumentation and Analytic Techniques for Radioactive Pulses (방사선 펄스의 고안정 계측 및 분석기술 개발)

  • 길경석;송재용;한주섭;김일권;손원진
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.2
    • /
    • pp.303-308
    • /
    • 2001
  • An objection of this study is to develop a high stable measuring circuits and a analytic system for radioactive pulses. The proposed system consists of a pulse detection units for neutrons and gamma-rays a programmable high voltage supply unit and a digital signal processor. The programmable high voltage supply unit designed can generate DC voltage up to 1,500 V at 5 V input and have a series voltage regulator to maintain the output voltage constantly, resulting in less than 1.63% of voltage regulation. The pulse detection parts consists of an active integrator, a pole-zero circuit, and a 3-stage amplifier of 60 dB, and its frequency bandwidth is from 37 Hz to 300 kHzAlso, pulse height distribution in accordance with pulse counts is important data in analyzing radioactive pulses. In this study, A/D convertor (12bit, 100ms) and DSP (TMS320C31-60) are used to analyze the pulse height, and the analytic system is designed to be operated in PC-base.

  • PDF

Three-dimensional Simulation of Wave Reflection and Pressure Acting on Circular Perforated Caisson Breakwater by OLAFOAM (OLAFOAM에 기초한 원형유공케이슨 방파제의 반사율 및 작용파압에 관한 3차원시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;Kim, Sang-Gi;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.286-304
    • /
    • 2017
  • In this study, we proposed a new-type of circular perforated caisson breakwater consisting of a bundle of latticed blocks that can be applied to a small port such as a fishing port, and numerically investigated the hydraulic characteristics of the breakwater. The numerical method used in this study is OLAFOAM which newly added wave generation module, porous media analysis module and reflected wave control module based on OpenFOAM that is open source CFD software published under the GPL license. To investigate the applicability of OLAFOAM, the variations of wave pressure acting on the three-dimensional slit caisson were compared to the previous experimental results under the regular wave conditions, and then the performance for irregular waves was examined from the reproducibility of the target irregular waves and frequency spectrum analysis. As a result, a series of numerical simulations for the new-type of circular perforated caisson breakwaters, which is similar to slit caisson breakwater, was carried out under the irregular wave actions. The hydraulic characteristics of the breakwater such as wave overtopping, reflection, and wave pressure distribution were carefully investigated respect to the significant wave height and period, the wave chamber width, and the interconnectivity between them. The numerical results revealed that the wave pressure acting on the new-type of circular perforated caisson breakwaters was considerably smaller than the result of the impermeable vertical wall computed by the Goda equation. Also, the reflection of the new-type caisson breakwater was similar to the variation range of the reflection coefficient of the existing slit caisson breakwater.

An Experimental Study on the Stability of Breakwater Head by the Wave Directional Effects (입사파의 방향성효과에 의한 방파제 제두부의 안정성에 관한 실험적 연구)

  • SOHN Byung-Kyu;KIM Hong-Jin;RYU Cheong-Ro
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.713-719
    • /
    • 2001
  • The aim of this study is to check the application criteria of the conventional techniques and clarify the effects of breaker depth, seabed conditions on the stability in relation to the effects of uncertainty of storm duration and directional irregular waves. The typical damage modes were divided by the direct wave force on the armor unit and by the local scouring around the toe of a breakwater head by the model experiments. The destruction modes are defined, and some criteria on the damage modes and scouring/deposition at the toe of a breakwater head in relating the wave-bottom-structural conditions can be checked using the multi-directonal irregular wave generator system. According to the results, it is emphasized that the 3-D effects on the stability should be analyzed in the design of multi-purpose/function coastal structures in consideration of the evaluation of spatial variation of damage modes and hydraulic characteristics as well as the wave distribution along the structures.

  • PDF