• Title/Summary/Keyword: 틸팅 열차

Search Result 181, Processing Time 0.028 seconds

Evaluation of Static Stability of Hybrid Carbody Structures of Korean Tilting Train eXpress Including Degradation Effects of Composite Materials under Ground Environments (지상환경하에서 복합재료의 물성저하를 고려한 한국형 틸팅열차 하이브리드 차체 구조물의 정적안정성 평가)

  • Shin, Kwang-Bok;Hahn, Seong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.807-815
    • /
    • 2004
  • In order to evaluate the static stability of hybrid carbody structures of Korean Tilting Train eXpress(TTX) caused by degradation of composites under ground environments, T300/AD6005 graphite/epoxy composite specimens were exposed to accelerated environmental conditions including ultraviolet radiation, temperature and moisture fer 2000 hours. It was found that the stiffness and strength of composites after aging were lower than those of unexposed specimens, and decreased as the aging time increases. The values of the degraded properties were used in the static analysis to check the static stability of hybrid carbody structures caused by environmental degradation of composites. The results shown that the structural stability of hybrid carbody structures was affected by the degradation of composites after exposure to accelerated aging environments.

Crash Simulation on the Front End Structure of Korean Tilting Train eXpress(TTX) (한국형 고속틸팅열차의 전두부 충돌특성 시뮬레이션)

  • Kim S.R.;Kwon T.S.;Jung H.S.;You W.H.;Koo J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.322-325
    • /
    • 2005
  • TTX(Tilting Train eXpress) is being designed for improving the speed of conventional railway. The purpose of this study is to evaluate energy absorbing capacity and driver's survivability for a design candidate of the front end structure of TTX. A FE model with honeycomb block, under frame, and body frame is generated for crash simulation. Based on a level-crossing accident scenario, numerical simulation is performed using LS-DYNA. The results of crash analysis show that strength improvement of the current front end structure design candidate is needed to ensure driver safety.

  • PDF

Introduction to an Evaluation Method for Crashworthiness of Korean Tilting Train Express (한국형 고속틸팅열차의 충돌안전도 평가기법 소개)

  • Jung H.S.;Kwon T.S.;Koo J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.318-321
    • /
    • 2005
  • Crashworthy design of a train is a systematic approach to ensure the safety of passengers and crews in railway transportation for the prescribed accident scenarios. This approach needs new structural arrangements and designs to absorb higher levels of impact energy in a controlled manner and interior designs to minimize passenger injuries. In this paper, an evaluation method for crashworthiness of Korean tilting train express is introduced. Crush characteristics for each part of tilting train express are evaluated numerically through 3-dimensional shell element analysis with LS-DYNA. Based on a head-on collision and a level crossing collision scenarios, the crash behaviors of tilting train express are evaluated numerically using full-rake collision simulations.

  • PDF

The Evaluation of the Structural Strength to Check the Basic Design for the Composite Carbody of the Tilting Train (복합재 틸팅열차 차체 구조물의 기본설계 검증을 위한 강도 평가)

  • 신광복;박기진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.203-206
    • /
    • 2003
  • Using composite materials for the carbody of tilting train has many advantages such as manufacturing variety, specific high-strength & stiffness characteristics, and long-life durability, but the strongest advantage could be the possibility of lightweight product. In the leading countries, the composite materials are used for the material fur drivers'cabs, interior/exterior equipments for railway train, and it is now developing the composite materials applied for the train carbody structure. In this paper, we conducted the evaluation of structural stability for the aluminum and composite carbody of the Korean Tilting Train express(TTX) with the service speed of 180km/h.

  • PDF

Evaluation of Mode II Interlaminar Fracture Toughness for Carbon Fabric/Epoxy Composites for Tilting Train Carbody (틸팅열차 차체8 탄소섬유직물/에폭시 복합재의 모우드 II 층간파괴인성 평가)

  • Yoon Sung-Ho;Lee Eun-Dong;Heo Kwang-Soo;Jung Jeong-Cheol;Shin Kwang-Bok
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.2
    • /
    • pp.195-201
    • /
    • 2005
  • Mode II interlaminar fracture behaviors of carbon fabric/epoxy composites, which are applicable to tilting train carbodies, was investigated by the ENF (End notched flexure) test. The specimens were made of CF3327 plain woven fabric with epoxy and a starter delamination at one end was made by inserting Teflon film with the thickness of 12.5$mu$m or 25.0$mu$m. The equation for mode II interlaminar fracture toughness was suggested based on the effective crack length from the compliance of load-displacement curve. Mode II interlaminar fracture toughness was evaluated for several types of the specimens. Also crack propagating behaviors and fracture surfaces were examined through an optical travelling scope and a scanning electron microscope.

A Study on Material Selection of the Carbody Structure of Korean Tilting Train express(TTX) through the Verification of Design Requirements (설계요구조건 검증을 통한 한국형 고속 틸팅열차(TTX)의 차체 재료 선정에 관한 연구)

  • 신광복;구동회;한성호;박기진
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.77-84
    • /
    • 2004
  • In order to determine the most suitable material system for achieving the lightweight design while fulfilling the design requirements of carbody structures of Korean Tilting Train eXpress(TTX), aluminum carbody. composite carbody, and hybrid carbody combined with aluminum and composite structures were considered in the present study. The finite-element analysis was used to verify the design requirements or the TTX carbody structures with the material system considered in the design stages. The stresses in the carbody structures and deflections of underframe against static load cases were used as design criteria. The results show that the hybrid carbody structures are beneficial with regard to weight savings and structural integrity in comparison to aluminum and composite carbody structures.

A Study on Material Selection of the Carbody Structure of Korean Tilting Train eXpress(TTX) (한국형 고속 틸팅열차(TTX)의 차체 재질 선정 연구)

  • Shin, Kwang-Bok;Koo, Dong-Hoe
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.462-467
    • /
    • 2004
  • In order to determine the most suitable material system which can achieve the lightweight design and fulfill the design requirements of carbody structures of Korean Tilting Train eXpress (TTX), aluminum carbody, composite carbody, and hybrid carbody combined with aluminum and composite structures were considered in present study. The finite-element analysis was used to verity the design requirements of the TTX carbody structures with the material system being considered in the design stages. The stresses in the carbody structures and deflections of underframe against static load cases were checked as design criteria. The results show that the hybrid carbody structures are beneficial with regard to weight savings and structural integrity when compared to aluminum and composite carbody structures.

  • PDF

Study on Improving the Environmental Performance of a Railway Vehicle through a Life Cycle Assessment of the Tilting Train (틸팅열차의 전과정평가를 통한 철도차량 환경성 개선방안연구)

  • Lee, Cheul Kyu;Kim, Yong-Ki;Lee, Jae-Young;Choi, Yo-Han;Kim, Cho-Young
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Recent international environmental regulations are focused on reducing pre-contamination and on sustainable development prior to the usage stage of a product. The Environmental Performance Declaration is being used as a tool for quantifying the environmental performance of products, to reduce contamination in advance, and for advertising the results of railway vehicles in Europe. In this study, a life cycle assessment of the tilting train was conducted, the first such case study in Korea, according to the ISO 14025 standard and Korea EDP (Environmental Declaration of the Product) rule. As a result of the LCA, the life cycle carbon emission of the tilting train was determined to be $3.54{\times}10^7kgCO_2eq.$ which is higher than that of a European train. Also, the amount of $CO_2$ emission of the Mcp and car body is higher than that of the other car and bogie.

Prediction of the Intensity of Vibration Around the Crossing Part of Manganese Turnout (망간분기기 크로싱부 인근의 진동 발생수준 예측)

  • Eum, Ki-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.61-66
    • /
    • 2008
  • In railroad operation, turnout is the device designed to provide very critical functions of moving the train to the neighboring rail. It's the only movable section among the rail and track equipment, which has a complicated structure and as rapid movement between the wheel and rail during operation is unavoidable, the safety and the vibration caused by the impact load of the passing train becomes always the major concern. Response to rail vibration tends to vary depending on physical properties of the rail, rail base and the ground, making it difficult to estimate the quantitative outcome through the measurement. Thus, experimental or empirical approach, rather than an analytic method, has been more commonly employed to deal with the ground vibration. To predict the vibration of the turnout, an experimental value and the measured values are applied in parallel to the factors with a high degree of uncertainty. This study hence was intended to compare and analyze the vibration values measured at the crossing part of manganese turnout by type of train and turnout and distance, as well as predict the intensity of vibration generated at the crossing part of manganese turnout when tilting train accelerates.