• Title/Summary/Keyword: 티타늄합금

Search Result 223, Processing Time 0.033 seconds

Study on Characteristics of Cryogenic Machining Process of Titanium Alloy at a Low Cutting Speed (티타늄 합금 소재 저속 영역 극저온 가공 특성 연구)

  • Kim, Do Young;Kim, Dong Min;Park, Hyung Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.237-241
    • /
    • 2017
  • Cryogenic machining uses liquid nitrogen (LN2) as a coolant. This machining process can reduce the cutting temperature and increase tool life. Titanium alloys have been widely used in the aerospace and automobile industries because of their high strength-to-weight ratio. However, they are difficult to machine because of their poor thermal properties, which reduce tool life. In this study, we applied cryogenic machining to titanium alloys. Orthogonal cutting experiments were performed at a low cutting speed (1.2 - 2.1 m/min) in three cooling conditions: dry, cryogenic, and cryogenic plus heat. Cutting force and friction coefficients were observed to evaluate the machining characteristics for each cooling condition. For the cryogenic condition, cutting force and friction coefficients increased, but decreased for the cryogenic plus heat condition.

Characteristics of Surface Grinding for Heat Treated Titanium Alloy (열처리된 티타늄 합금의 연삭가공 특성)

  • Heo, S.;Kim, W.I.;Wang, D.H.;Lee, Y.K.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.349-354
    • /
    • 2000
  • A use of Titanium alloy as a structural material is increasing lately. Among those titanium alloys, Ti-6A1-4V alloy is the most popular one with taking 2/3 of it's market. Also, Ti-6A1-4V alloy can get the stability of organization and product measure, and the evaluation of the cutting ability and the mechanical characteristics. The point in titanium alloy work is on how treat the heat generated during grinding. Because the heat conductivity of titanium alloy is unnegligibly low, the grinding heat is accumulated in workpiece, and it cause the increasing of grinding grits' wear and the rough grinding surface. So, these characteristics in grinding of titanium alloy will change the mechanical characteristics of the titanium alloy. From this study, the mechanical characteristics of annealed Ti-6A1-4V alloy after grinding was concerned with checking out the bending strength values, and the factor of the change and the difference was analyzed after analyzing the surface roughness and the image from SEM.

  • PDF

Improving Machining Quality of L-Shaped Thin-Walled Structure in Milling Process of Ti-Alloy (Ti-6Al-4V) (티타늄 합금(Ti-6A1-4V)의 밀링가공에서 L자형 얇은 벽 구조의 가공품질 향상)

  • Kim, Jong-Min;Koo, Joon-Young;Jun, Cha-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.52-59
    • /
    • 2021
  • Titanium alloy (Ti-alloy) is widely used as a material for core parts of aircraft structures and engines that require both lightweight and heat-resistant properties owing to their high specific stiffness. Most parts used in aircraft have I-, L-, and H-shaped thin-walled structures for weight reduction. It is difficult to machine thin-walled structures owing to vibrations and deformations during machining. In particular, cutting tool damage occurs in the corners of thin-walled structures owing to the rapid increase in cutting force and vibration, and machining quality deteriorates because of deep tool marks on machined surfaces. In this study, milling experiments were performed to derive an effective method for machining a L-shaped thin-walled structure with Ti-alloy (Ti-6Al-4V). Three types of machining experiment were performed. The surface quality, tool wear, cutting force, and vibration were analyzed comprehensively, and an effective machining method in terms of tool life and machining quality was derived.

A Study on Vibration Characteristics and Machining Quality in Thin-wall Milling Process of Titanium Alloy (티타늄 합금의 얇은 벽 밀링가공에서 가공방법에 따른 진동특성 및 가공품질에 관한 연구)

  • Kim, Jong-Min;Koo, Joon-Young;Jun, Cha-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.81-88
    • /
    • 2022
  • Titanium alloy (Ti-6Al-4V) has excellent mechanical properties and high specific strength; therefore, it is widely used in aerospace, automobile, defense, engine parts, and bio fields. Particularly in the aerospace field, as it has a low specific gravity and rigidity, it is used for the purpose of increasing energy efficiency through weight reduction of parts, and most have a thin-walled structure. However, it is extremely difficult to machine thin-walled shapes owing to vibration and deformation. In the case of thin-walled structures, the cutting forces and vibrations rapidly increase depending on the cutting conditions, significantly affecting the surface integrity and tool life. In this study, machining experiments on thin-wall milling of a titanium alloy (Ti-6Al-4V) were conducted for each experimental condition with different axial depths of cut, radial depth of cut, and machining sequence. The machining characteristics were analyzed, and an effective machining method was derived by a comprehensive analysis of the machined surface conditions and cutting signals.

The Study of Corrosion Behavior for Solution and Aging Heat Treated Ti alloy (Ti 합금의 용체화열처리와 시효열처리에 따른 부식거동)

  • Baik, Shin-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.138-144
    • /
    • 2016
  • Titanium is resistant to general corrosion and in sea water because of the passivity layer film on the surface of material, but may be attacked by environments that cause breakdown of the protective oxide layer including hydrochloric, sulfuric and phosphoric acids. In this study, the Ti alloys were solution heat treatment 5hours at $1066^{\circ}C$ and $966^{\circ}C$, and followed by aging heat treated, 1, 4, 8 and 16 hours in $500^{\circ}C$, $600^{\circ}C$ and $650^{\circ}C$ respectively. The heat treated specimens were measured micro Vicker's hardness, and then accomplished electrochemical polarization test for comparing corrosion in 1N sulfuric acid solution. Additionally, micro structures were taken for corrosion tested specimens. The results showed that corrosion resistance was higher in solution heat treated alloy than base and age heat treated metal. Measured corrosion resistants were increased as increasing aging heat treatment time and temperature.

Comparison of histologic observation and insertional and removal torque values between titanium grade 2 and 4 microimplants (Grade 2, 4 티타늄 마이크로 임플랜트의 식립 및 제거 토크와 식립 후 조직학적 반응의 비교)

  • Kang, Sung-Taek;Sung, Jae-Hyun;Kyung, Hee-Moon;Park, Hyo-Sang;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.36 no.3 s.116
    • /
    • pp.171-177
    • /
    • 2006
  • The purpose of this study was to evaluate the light microscopic features and the maximum insertional and removal torque value of microimplants, made from titanium grade 2 or 4, in the tibia of 6 rabbits. First, the maximum torque values of microimplants at implantation were measured. After 2, 8, and 12 weeks of healing time, the microimplant-containing segments of tibia of 2 rabbits were removed and the maximum removal torque of each microimplant were measured. Comparisons of histologic examination and insertional and removal torque values were carried out for the two groups of microimplants. Removal torque values were significantly increased in both groups after 8 and 12 weeks as compared to 2 weeks after implantation. Other values measured did not show any statistically significant differences and there were no histological differences between grade 2 and 4 titanium. Based on these results, this study showed that there were no significant differences between grade 2 and 4 titanium. It seems better to use grade 4 titanium for making microimplants because grade 4 titanium is mechanically harder than grade 2 titanium and has similar retention.

The Effect of Titanium on the Castability of Cobalt-Chrome Alloy (코발트 크롬 합금의 주조성에 미치는 타이타늄의 효과)

  • Ryu, Su-Kyoung;Chung, Hee-Jeong;Vang, Mong-Sook;Yang, Hong-So;Lim, Hyun-Pil;Yun, Kwi-Dug;Park, Sang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.1
    • /
    • pp.73-79
    • /
    • 2011
  • Purpose of this experiment is to evaluate the effect of titanium on the castability when the titanium is added to the Co-Cr alloy. Raw materials Cobalt, Chrome, Molybdenum, Silicon, Manganase, Carbon, Nitrogen, Titanium were weighted and prepared. $Biosil^F$ (Degudent, Germany) was the control group. To the experimental group, different weight percent of titanium was added from 1 wt% to 4 wt%. The wax pattern is $30{\times}40$ cm in size, rectangular in shape and has total of 160 grids. Centrifugal machine (Neutrodyne Easy Ti: Manfredy) was used for casting. For evaluation of the castability, the number of complete grids was counted by visual inspection and X-ray inspection. The test showed similar castability with the control group in the titanium addition of 1 wt% to 3 wt%. The titanium addition of 4 wt% showed poor result. With titanium lower than 4 wt%, the experiment metals showed proper castability with high expectation of successful clinical use.

Fabrication of Lightweight Sandwich Structural Components with Superplastic Forming/Diffusion Bonding Technology (초소성/확산접합 기술을 이용한 티타늄 샌드위치 경량구조물 제작)

  • Lee, Ho-Sung;Yoon, Jong-Hoon;Yi, Yeong-Moo;Shin, Dong Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.778-782
    • /
    • 2007
  • In the present study, design and forming process of fabricating titianium lightweight components are developed with applicaton of superplastic forming and diffusion bonding technology. SPF/DB(Superplastic forming/Diffusion bonding) technology is one of the advanced technologies to reduce production cost and weight and currently applied to aircrafts and space launchers in foreign countries. The present study constructs an analysis model to predict superplastic forming behavior of titanium alloy, which is well known for its resistance to deform. The experimental results show the forming of titanium lightweight sandwich structure is successfully performed from 3 sheets of Ti-6Al-4V. The results demonstrate that the developed technology to process design of SPF/DB by the finite element method can be applied to various types of components.

The study on the shear bond strength of resin and porcelain to Titanium (티타늄에 대한 레진과 도재의 결합 강도에 관한 연구)

  • Park, Ji-Man;Kim, Yeong-Soon;Jun, Sul-Gi;Park, Eun-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • Statement of problem: Recently, titanium has become popular as superstructure material in implant dentistry because titanium superstructure can be easily milled by means of computer-aided design and manufacture (CAD/CAM) technique. But retention form such as nail head or bead cannot be cut as a result of technical limitation of CAD/CAM milling and bond strength between titanium and porcelain is not as strong as that of conventional gold or metal alloy. Purpose: The objective of this study was to evaluate the shear bond strength of three different materials: heat curing resin, composite resin, porcelain which were bonded to grade II commercially pure Titanium (CP-Ti). Material and methods: Thirty seven CP-Ti discs with 9 mm diameter, 10 mm height were divided into three groups and were bonded with heat curing resin (Lucitone 199), indirect composite resin (Sinfony), and porcelain (Triceram) which were mounted in a former with 7 mm diameter and 1 mm height. Samples were thermocycled for 1000 cycles at between $5-55^{\circ}C$. Shear bond strength (MPa) was measured with Instron Universal Testing Machine with cross head speed of 1 mm/min. The failure pattern was observed at the fractured surface and divided into adhesive, cohesive, and combination failure. The data were analyzed by one-way ANOVA and Scheffe's multiple range test (${\alpha}=0.05$). Results: Lucitone 199 ($17.82{\pm}5.13\;MPa$) showed the highest shear bond strength, followed by Triceram ($12.97{\pm}2.11\;MPa$), and Sinfony ($6.00{\pm}1.31\;MPa$). Most of the failure patterns in Lucitone 199 and Sinfony group were adhesive failure, whereas those in Triceram group were combination failure. Conclusion: Heat curing resin formed the strongest bond to titanium which is used as a CAD/CAM milling block. But the bond strength is still low compared with the bond utilizing mechanical interlocking and there are many adhesive failures which suggest that more studies to enhance bond strength are needed.

Optimum Machining Condition Determination for Pedicle Screw using Experimental Design Method (실험계획법에 의한 척추경 나사의 최적 절삭조건 결정)

  • Jang, Sung-Min;Cho, Myeong-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.3-9
    • /
    • 2004
  • The main objectives of this paper are to determine optimum cutting conditions using experimental design method to manufacture pedicle screws. Generally, titanium alloys are known as difficult-to cut materials. In the machining of titanium alloy, high cutting temperature and strong chemical affinity between the tool and the work material are generated because of Its low thermal conductivity and chemical reactivity. Such phenomenon cause increase of tool wear and deterioration of surface quality. Thus, in this paper, required experimental investigations are performed to evaluate the machinability of titanium materials With tungsten carbide tools Required simulation and experiments are performed, and the results are investigated.

  • PDF