• Title/Summary/Keyword: 티타늄합금

Search Result 225, Processing Time 0.033 seconds

Correction of Single Thoracic Adolescent Idiopathic Scoliosis Using Pedicle Screw Instrumentation: Comparison of Stainless Steel to Titanium Alloy Instruments (척추경 나사못 고정술을 이용한 단일 흉추 청소년기 특발성 척추 측만증의 치료: 스테인리스강과 티타늄 합금 기기의 비교)

  • Kim, Sung-Soo;Lim, Dong-Ju;Kim, Jung-Hoon;Choi, Byung-Wan;Kim, Hwi-Young;Lee, Jun-Seok
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.2
    • /
    • pp.141-149
    • /
    • 2019
  • Purpose: To compare the results of two different instruments made of stainless steel and titanium alloy for correction of single thoracic adolescent idiopathic scoliosis (AIS) using pedicle screw instrumentation. Materials and Methods: A total of 141 patients with single thoracic AIS treated with pedicle screw instrumentation and selective thoracic fusion were retrospectively reviewed after a follow-up of 2 years. The patients had a main thoracic curve of 40° to 75° and were divided into two groups based on instrument materials; S group (stainless steel, n=90) and T group (titanium alloy, n=51). The diameter of the stainless steel rod used was 7.0 mm while that of the titanium alloy rod was 6.35 mm or 6.0 mm. Standing long-cassette radiographic measurements including various coronal and sagittal parameters for the preoperative, early postoperative and 2-year postoperative followup were analyzed. There were no significant differences in the preoperative curve characteristics between the two groups. Results: In the S group, the preoperative main thoracic curve of 51.3°±8.4° was improved to 19.0°±7.6° (63.1% correction) and the lumbar curve of 32.3°±8.4° spontaneously decreased to 12.7°±8.2° (62.9% correction) at 2 years postoperatively. In the T group, the preoperative main thoracic curve of 49.5°±8.4° and the lumbar curve of 30.3°±8.9° was improved to 18.8°±7.4° (62.2% correction) and 11.3°±5.4° (63.3% correction), respectively. The corrections of coronal curves were not statistically different between the two groups (p>0.05). The thoracic kyphosis was changed from 16.8°±8.5° to 24.3°±6.1° in the S group and from 19.6°±11.2° to 26.6°±8.5° in the T group. There were no significant differences in the changes of sagittal curves, coronal and sagittal balances at the 2-year follow-up and the number of fused segments and used screws between the two groups (p>0.05). Conclusion: When conducting surgery for single thoracic AIS using pedicles screw instrumentation, two different instruments made of stainless steel and titanium alloy showed similar corrections for coronal and sagittal curves.

A Study on the Characteristics for Electric Resistance Brazing of Eyewear Frame P-Ti and α+β-Ti (안경테용 P-Ti와 α+β-Ti의 전기저항땜질 특성에 관한 연구)

  • Park, Jeong-Sik;Park, Eun-Kyoo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.4
    • /
    • pp.5-8
    • /
    • 2007
  • Titanum and its alloys have been used as the important materials of eyewear frame because of its light weight, mechanical strength and corrosion resistance. This study investigated the characteristics of P-Ti and ${\alpha}$+${\beta}$-Ti alloys in accordance with joining conditions by electric resistance brazing. Hardness of P-Ti and ${\alpha}$+${\beta}$-Ti has been reduced because of an increase of grain size by the growth of brazing current. Especially, hardness reduction was largely appeared in P-Ti than ${\alpha}$+${\beta}$-Ti. It was considered that a little decrease of hardness in ${\alpha}$+${\beta}$-Ti was due to formation of detailed ${\alpha}$+${\beta}$ lamella.

  • PDF

초음파 진동을 이용한 정밀절삭에 관한 연구

  • 김정두;곽윤근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.4
    • /
    • pp.818-829
    • /
    • 1990
  • 본 연구에서는 공구의 진동에 사용되는 혼(hone)의 재료로 강성과 초음파진동 이 우수한 티타늄 합금을 사용하였으며, 이의 설계 및 진동절삭 기구의 구성과 공구형 상 및 이송에 의하여 결정되는 선삭의 이론적 표면조도를 근간으로 각종 절삭 조건 등 을 변화시키면서 실험을 행하여 초음파 진동 절삭시 나타나는 특성들 중 절삭저항, 다 듬질면 거칠기, 칩형태, 가공정도 등을 관찰하여 범용절삭과 비교 검토하여 초음파 진 동절삭이 정밀가공 및 생산성 향상에 적합한 가공방법임을 입증코져 한다.

Experimental study of NiTi shape memory alloy (NiTi 형상기억합금의 실험적 연구)

  • Yang Seung-Yong;Goo Byeong-Choon;Kim Hyung-Jin;Nam Tae-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.611-615
    • /
    • 2004
  • To obtain material properties of NiTi shape memory alloy showing pseudoelastic or shape memory effect, tensile test was conducted for various temperatures. Transformation temperature also was measured by using DSC(Differential Scanning Calorimeter), and crystallographic feature of transformation was observed by XRD(X-ray Diffraction).

  • PDF

Estimation of Electrochemical Stability of Dental Implant in Various Electrolytes (다양한 전해액에서 치과용 임플란트의 전기화학적 안정성 평가)

  • Kim, Tae-Han;Choe, Han-Cheol;Go, Yeong-Mu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.52-52
    • /
    • 2007
  • 치과 임플란트는 주로 Ti 합금으로 이루어지며 구강내 또는 체내에 매식되기 때문에 다양한 신체용액에 노출될 수 있다. 본 연구에서는 국내에서 제조된 티타늄 임플란트를 이용하여 수종의 신체유사용액에서 전기화학적인 방법을 통해 각각의 부식 안정성을 평가하였다.

  • PDF

Study on the mechanical Properties of Ti-8Ta-3Nb Alloys for Biomaterials (생체재료용 Ti-8Ta-3Nb 합금의 물성변화 고찰)

  • 이경원;반재삼;유영선;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1374-1377
    • /
    • 2003
  • Ti-8Ta-3Nb is made for biomaterial. The experimental speciments are as-cast Ti-8Ta-3Nb and Ti-8Ta-3Nb swaged. The solution treatment in the range 760-96$0^{\circ}C$have been carried out. The microstructural investigations have been carried out on the specimens after the solution treatment. and the hardness have been measured. And the specific heat and the dilatometer of Ti-8Ta-3Nb swaged have been measured. From the result, the $\beta$ transus of the alloy was determined to be 880-86$0^{\circ}C$.

  • PDF

The Effect of Temperature, Frequency and Microstructure on Fatigue Crack Propagation in Ti-6A1-4V Alloy (Ti-6A1-4V 합금의 피로거동에 미치는 온도, 주파수 및 미세조직의 영향)

  • 김현철;김승한;임병수;김두현;이용태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.198-207
    • /
    • 1996
  • The effect of temperature, frequency and microstructure on fatigue crack propagation property of Ti-6A1-4V alloy has been investigated. The temperatures employed were room temperature, 20$0^{\circ}C$ and 40$0^{\circ}C$. The frequencies were 20Hz and 8 Hz. The microstructures tested were equiaxed and bimodal microstructures. Mechanical properties and fatigue crack growth rates were measured in different test conditions. From the experimental results, following conclusions were obtained. Bimodal microstructure showed superior fatigue crack growth resistance to equiaxed microstructure. Under all test conditions, fatigue crack growth rate increased with test temperature. Wine the frequency decreasing from 20Hz to 8Hz, fatigue crack growth rate increased.

  • PDF

A Study on the Cutting Characteristics and Analysis by a FEM in the Machining of Ti-6Al-4V alloy (Ti-6Al-4V 합금의 절삭특성과 FEM 해석 비교에 관한 연구)

  • 김남용;홍우표;이동주
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.29-35
    • /
    • 2001
  • The cutting characteristics of Ti-6Al-4V alloy and total wear when machining Ti-6Al-4V alloy was studied to understand the machining characteristics. This material is one of the strong candidate materials present and future aerospace or met ical applications. Nowadays their usage has already been broaden to commercial applications such as golf club head, finger rings and many decorative items. Anticipating the general use of this material and development of the titanium alloy in domestic facilities, the review and the study of the machining parameters far those alloys are deemed necessary. This study is concentrated to the machining parameters of the Ti-6Al-4V alloy due to their dominant position in the production of tita mum alloys.

  • PDF

Effects of heat treatment on the load-deflection properties of nickel-titanium wire (니켈-티타늄 와이어의 열처리에 따른 부하-변위 특성 변화)

  • Chang, Soo-Ho;Kim, Kwang-Won;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.36 no.5
    • /
    • pp.349-359
    • /
    • 2006
  • Objective: Nickel-titanium alloy wire possesses excellent spring-back properties, shape memory and super-elasticity. In order to adapt this wire to clinical use, it is necessary to bend as well as to control its super-elastic force. The purpose of this study is to evaluate the effects of heat treatment on the load-deflection properties and transitional temperature range (TTR) of nickel-titanium wires. Methods: Nickel-titanium wires of different diameters ($0.016"\;{\times}\;0.022"$, $0.018"\;{\times}\;0.025"$ and $0.0215"\;{\times}\;0.028"$) were used. The samples were divided into 4 groups as follows: group 4, posterior segment of archwire (24 mm) without heat treatment; group 2, posterior segment of archwire (24 mm) with heat treatment only; group 3, anterior segment with bending and heat treatment; group 4, anterior segment with bending and 1 sec over heat treatment. Three point bending test was used to evaluate the change in load-deflection curve and obtained DSC (different scanning calorimetry) to check changes in $A_f$ temperature. Results: In the three point bending test, nickel-titanium wires with heat treatment only had higher load-deflection curve and loading and unloading plateau than nickel-titanium wires without heat treatment. Nickel-titanium wires with heat treatment had lower Af temperature than nickel-titanium wires without heat treatment. Nickel-titanium wires with heat treatment and bending had higher load-deflection curve than nickel- titanium wires with heat treatment and nickel-titanium wires without heat treatment. Nickel-titanium with heat treatment of over 1 sec and bending had the highest load-deflection curve. Nickel-titanium wires with heat treatment and bending had lower Af temperature, Nickel-titanium wires with heat treatment of over Af sec and bending had the lowest Af temperature. Conclusion: From the results of this study, it can be stated that heat treatment for bending of Nickel-titanium wires does not deprive the superelastic property but can cause increased force magnitude due to a higher load-deflection curve.