• 제목/요약/키워드: 티모쉔코 보

검색결과 3건 처리시간 0.021초

비전통적 오차 최소화 방식에 기초한 비선형 빔의 휨에 대한 혼합형 유한요소해석 모델 연구 (A Study on the Mixed Finite Element Models of Nonlinear Beam Bending Based on the Unconventional Residual Minimizing Method)

  • 김우람;최윤대
    • 한국군사과학기술학회지
    • /
    • 제12권6호
    • /
    • pp.785-795
    • /
    • 2009
  • In this paper, new type of finite element models for the analysis of nonlinear beam bending are developed by using unconventional residual minimizing method to increase accuracy of finite element solutions and overcome some of computational drawbacks. Developing procedures of the new models are presented along with the comparison of the numerical results of existing beam bending models.

균일단면 선박의 유탄성 수평응답에 대한 해석해 (Exact Solution on the Anti-symmetric Responses of Ships having Uniform Sectional Properties with Hydro-elasticity)

  • 정종진;박인규
    • 대한조선학회논문집
    • /
    • 제41권4호
    • /
    • pp.45-52
    • /
    • 2004
  • Exact solution on the anti-symmetric response of ships having uniform sectional properties in waves is derived. Boundary value problem consisted of Timoshenko beam equation and free-free end condition is solved analytically. The responses are assumed as linear and wave loads are calculated by using strip method. Horizontal bending moment, shear force and torsional moment are calculated. The developed analysis model is used for the benchmark test of the numerical codes in this problem. Also the application on the preliminary design of barge-like ships and VLFS (Very Large Floating Structure) is expected

균일단면 선박의 유탄성 수직응답에 대한 해석해 (Exact Solution on the Vertical Hydro-elastic Responses of Ships having Uniform Sectional Properties)

  • 박인규;정종진
    • 대한조선학회논문집
    • /
    • 제41권2호
    • /
    • pp.47-54
    • /
    • 2004
  • Exact solution on the vertical responses of ships having uniform sectional properties in waves is derived. Boundary value problem consisted of Timoshenko beam equation and free-free end condition is solved analytically. The responses are assumed as linear and wave loads are calculated by using strip method. Vertical bending moment, shear force and deflection are calculated. The developed analysis model is used for the benchmark test of the numerical codes in this problem. Also the application on the preliminary design of barge-like ships and VLFS (Very Large Floating Structure) is expected.