• 제목/요약/키워드: 특징 추출 공학

검색결과 885건 처리시간 0.024초

KOMPSAT-3/3A 기준영상의 기하품질에 따른 상호좌표등록 결과 분석 (Analysis of Co-registration Performance According to Geometric Processing Level of KOMPSAT-3/3A Reference Image)

  • 윤예린;김태헌;오재홍;한유경
    • 대한원격탐사학회지
    • /
    • 제37권2호
    • /
    • pp.221-232
    • /
    • 2021
  • 본 연구는 KOMPSAT-3 및 KOMPSAT-3A호에서 전처리 단계에 따라 구분하여 제공하는 Level 1R 영상과 Level 1G 영상을 이용하여 기준영상의 기하품질에 따른 상호좌표등록 결과 분석을 수행하였다. 기준영상으로 Level 1R 영상 및 1G 영상 각각을 사용하고 대상영상은 Level 1R 영상을 사용하여 상호좌표등록을 수행하였다. 실험을 위해 대전지역에서 촬영된 KOMPSAT-3 및 3A호의 Level 1R, 1G 영상 총 7장을 이용하였다. 상호좌표등록을 수행하기 위해, 우선적으로 특징기반 정합기법인 SURF (Speeded-Up Robust Feature) 기법과 영역기반 정합기법인 위상상관 (Phase Correlation) 기법을 함께 이용한 반복적 정합기법을 통해 두 영상의 기하학적 위치를 개략적으로 일치시켜 주었다. 개략적으로 일치된 영상에서 SURF 기법을 이용하여 정합쌍을 추출하고 Affine 변환모델과 Piecewise Linear 변환모델을 각각 구성하여 상호좌표등록을 수행하였다. 실험결과, 기하오차가 보정된 Level 1G 영상을 기준영상으로 선정하였을 경우, Level 1R 영상을 이용하였을 때보다 상대적으로 많은 수의 정합쌍을 추출하였다. 또한, 기준영상이 Level 1G 영상일 때의 상호좌표등록 RMSE (Root Mean Square Error) 값이 평균 5화소 미만으로 Level 1R 영상을 이용하였을 때보다 더 낮은 것을 확인하였다. 이는 상호좌표등록 수행 시 두 위성영상 간의 초기위치관계가 상호좌표등록 결과에 영향을 끼칠 수 있음을 의미하며, 기준영상의 기하품질이 우수할수록 안정적인 상호좌표등록 정확도를 나타내는 것을 확인하였다.

다중 센서 융합을 위한 무인항공기 물리 오프셋 검보정 방법 (Physical Offset of UAVs Calibration Method for Multi-sensor Fusion)

  • 김철욱;임평채;지준화;김태정;이수암
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1125-1139
    • /
    • 2022
  • 무인항공기에 부착된 위성 항법 시스템/관성 측정 센서(global positioning system/inertial measurement unit, GPS/IMU)와 관측 센서 사이에는 물리적인 위치와 자세 오차가 존재한다. 해당 물리 오프셋으로 인해, 관측 데이터는 비행 방향에 따라 서로 위치가 어긋나는 이격 오차가 발생한다. 특히나, 다중 센서를 활용하여 데이터를 취득하는 다중 센서 무인항공기의 경우, 관측 센서가 변경될 때마다 고액의 비용을 지불하고 외산 소프트웨어 의존하여 물리 오프셋을 조정하고 있는 실정이다. 본 연구에서는 다중 센서에 적용 가능한 초기 센서 모델식을 수립하고 물리 오프셋 추정 방법을 제안한다. 제안된 방안은 크게 3가지 단계로 구성된다. 먼저, 직접지리 참조를 위한 회전 행렬 정의 및 초기 센서 모델식을 수립한다. 다음으로, 지상기준점과 관측 센서에서 취득된 데이터 간의 대응점을 추출하여 물리 오프셋 추정을 위한 관측방정식을 수립한다. 마지막으로, 관측 자료를 기반으로 물리 오프셋을 추정하고, 추정된 파라미터를 초기 센서 모델식에 적용한다. 전주, 인천, 알래스카, 노르웨이 지역에서 취득된 데이터셋에 적용한 결과, 4개 지역 모두 물리 오프셋 적용 전에 발생되던 영상 접합부의 이격 오차가 물리 오프셋을 적용 후 제거되는 것을 확인했다. 인천 지역의 지상기준점 대비 절대 위치 정확도를 분석한 결과, 초분광 영상의 경우, X, Y 방향으로 약 0.12 m 위치 편차를 보였으며, 라이다 포인트 클라우드의 경우 약 0.03 m의 위치 편차를 보여줬다. 더 나아가 영상 내 특징점에 대하여 초분광, 라이다 데이터의 상대 위치 정확도를 분석한 결과, 센서 데이터 간의 위치 편차가 약 0.07 m인 것을 확인했다. 따라서, 제안된 물리 오프셋 추정 및 적용을 통해 별도 기준점 없이 정밀한 데이터 매핑이 가능한 직접 지리 참조가 가능하다는 것을 확인했으며, 다중 센서를 부착한 무인항공기에서 취득된 센서 데이터 간의 융합 가능성에 대해 확인하였다. 본 연구를 통해 독자적인 물리 파라미터 추정 기술 보유를 통한 경제적 비용 절감 효과 및 관측 조건에 따른 유연한 다중 센서 플랫폼 시스템 운용을 기대한다.

비선형 피부색 변화 모델을 이용한 실감적인 표정 합성 (Synthesis of Realistic Facial Expression using a Nonlinear Model for Skin Color Change)

  • 이정호;박현;문영식
    • 전자공학회논문지CI
    • /
    • 제43권3호
    • /
    • pp.67-75
    • /
    • 2006
  • 얼굴의 표정은 얼굴의 구성요소같은 기하학적 정보와 조명이나 주름 같은 세부적인 정보들로 표현된다. 얼굴 표정은 기하학적 변형만으로는 실감적인 표정을 생성하기 힘들기 때문에 기하학적 변형과 더불어 텍스처 같은 세부적인 정보도 함께 변형해야만 실감적인 표현을 할 수 있다. 표정비율이미지 (Expression Ratio Image)같은 얼굴 텍스처의 세부적인 정보를 변형하기 위한 기존 방법들은 조명에 따른 피부색의 변화를 정확히 표현할 수 없는 단점이 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 서로 다른 조명 조건에서도 실감적인 표정 텍스처 정보를 적용할 수 있는 비선형 피부색 모델 기반의 표정 합성방법을 제안한다. 제안된 방법은 동적 외양 모델을 이용한 자동적인 얼굴 특징 추출과 와핑을 통한 표정 변형 단계, 비선형 피부색 변화 모델을 이용한 표정 생성 단계, 유클리디 거리 변환 (Euclidean Distance Transform)에 의해 계산된 혼합 비율을 사용한 원본 얼굴 영상과 생성된 표정의 합성 등 총 3 단계로 구성된다. 실험결과는 제안된 방법이 다양한 조명조건에서도 자연스럽고 실감적인 표정을 표현한다는 것을 보인다.

EIS 기반 전압신호 분석을 통한 당뇨병 진단 가능성 평가 (Diagnosis of Diabetes Using Voltage Analysis Based on EIS (Electro Interstitial Scan))

  • 배장한;김수찬;카니티카 케오칸네트;전민호;김재욱
    • 전자공학회논문지
    • /
    • 제53권11호
    • /
    • pp.114-122
    • /
    • 2016
  • EIS (Electro interstitial scan, 전기체간스캔법)는 전극을 이용해 미세전류를 인체에 인가하고 그에 따른 전기적 반응을 분석하여 생리적인 정보를 얻는 방법으로, 비침습적이고 간단한 검사가 가능하다는 장점이 있다. 특히 당뇨병 진단을 위한 스크린용으로 적합하다는 연구들이 진행되어 왔으나 대부분 진단 원리에 대한 구체적인 논의가 이루어지지 않았다. 본 연구에서는 EIS 방법이 당뇨병 스크리닝 및 임상에 유용하게 활용될 수 있을지 분석해 보기위해 당뇨병 환자와 정상인을 대상으로 EIS 장비의 원 신호인 전압 변동 데이터를 특정경로에서 측정하였다. 전압 신호의 특징점을 추출하고 두 그룹 사이의 AUC (Area under the curve)를 계산한 결과 7개의 변수들이 60% 이상의 분류 정확도를 보였다. 또한 이 변수들을 k-NN 분류기로 학습한 결과, 왼쪽 손에서의 전압 변동 크기를 기준으로 분석했을 때 분류 정확도를 76.2%까지 높일 수 있었다. EIS 기반의 전압신호 분석법으로 비침습적인 당뇨병 스크리닝의 가능성을 보였다.

점토광물의 분광반사율 및 ASTER 위성영상을 이용한 산사태 발생지역 분석 (Analysis of Landslide locations using Spectral Reflectance of Clay Mineral and ASTER Satellite Image)

  • 남경훈;이홍진;정교철
    • 지질공학
    • /
    • 제24권3호
    • /
    • pp.411-421
    • /
    • 2014
  • 이 연구의 목적은 2011년 경기도 용인시에서 발생한 산사태 지역을 대상으로 산사태 발생에 영향을 끼치는 팽창성 점토광물 및 지형분석을 통한 산사태 발생 원인을 분석하는 것이다. XRD, XRF, 분광분석 및 아스터(ASTER) 위성영상을 이용하여 점토광물 분석과 현장조사를 통한 산사태 발생원인과 취약지역을 분석하였다. 일라이트는 0.9와 $1.0{\mu}m$ 인근파장대역에서 $Fe^{2+}$$Fe^{3+}$의 흡수가 나타났으며 1.4와 $1.9{\mu}m$ 인근파장대역에서 OH와 $H_2O$의 강한 흡수 특성이 일어났다. 추가적으로 2.2, 2.3과 $2.4{\mu}m$ 인근파장대역에서 Al-hydroxyl이 나타났다. 흡수 특징은 아스터 위성영상의 밴드 5, 6, 7에서 일치하였고, $SWIR_{Illite}$ 밴드연산을 이용하여 일라이트 영상을 추출하였다. 분석 결과를 바탕으로 팽창성 점토광물에 의한 산사태 해석에 아스터 위성영상의 적용 가능성을 확인하였다.

깊이맵의 정보 분해와 경계 평탄 필터링을 이용한 다시점 영상 생성 방법 (Generation of Multi-view Images Using Depth Map Decomposition and Edge Smoothing)

  • 김성열;이상범;김유경;호요성
    • 방송공학회논문지
    • /
    • 제11권4호
    • /
    • pp.471-482
    • /
    • 2006
  • 본 논문은 깊이맵의 정보 분해(information decomposition)와 적응적 경계 평탄 필터링(adaptive edge smooth filtering)을 이용하여 다시점 영상을 생성하는 방법을 제안한다. 제안한 방법은 깊이맵의 경계 영역에 평탄 필터링을 수행한 후, 깊이맵을 네 가지 종류의 분해 영상, 즉, 규칙 메쉬 영상, 경계 영상, 특징점 영상, 계층의 수 영상으로 변환한다. 그런 다음, 네 가지의 분해 영상에 3차원 메쉬 표현법을 적용하여 3차원 장면을 생성하고, 3차원 공간에서 가상 카메라의 위치를 변경하여 생성한 3차원 장면으로부터 다시점 영상을 추출한다. 실험 결과는 제안한 방법이 rubber-sheet 문제를 최소화하여 다시점 영상을 성공적으로 생성할 수 있었고, 깊이맵의 정보 분해를 통해 실시간으로 3차원 장면을 렌더링할 수 있었음을 보여준다. 또한, 제안한 방법은 기존의 방법과 달리 깊이맵 정보를 보존하기 때문에, 깊이 키잉(depth keying)과 같이 깊이 정보를 이용하는 3차원 응용에 활용할 수 있다.

혈소판 라만 스펙트럼의 효율적인 분석을 위한 기준선 보정 방법 (A Baseline Correction for Effective Analysis of Alzheimer’s Disease based on Raman Spectra from Platelet)

  • 박아론;백성준
    • 전자공학회논문지CI
    • /
    • 제49권1호
    • /
    • pp.16-22
    • /
    • 2012
  • 본 논문에서는 알츠하이머병이 유도된 형질전환 마우스로부터 획득한 혈소판 라만 스펙트럼의 분석을 위해 가우시안 모델을 이용한 커브 피팅으로 기준선을 추정하고 보정하는 방법을 제안하였다. 측정된 라만 스펙트럼은 의미 있는 정보와 불필요한 노이즈 성분인 기준선과 가산 노이즈를 포함하고 있다. 스펙트럼의 효율적인 분석을 위해 노이즈를 포함하고 있는 스펙트럼을 몇 개의 피크를 포함하는 영역으로 분할하고 각 로컬 영역의 스펙트럼을 가우시안 모델을 이용한 커브 피팅으로 모델링한다. 가산 노이즈는 원 스펙트럼을 이 델로 대체하는 과정에서 명백하게 제거된다. 피팅된 모델의 로컬 최저점을 linear, piecewise cubic Hermite, cubic spline 알고리즘으로 보간하고 기준선을 보정한다. 기준선을 보정한 피팅 모델은 PCA(principal component analysis) 방법을 이용하여 특징을 추출하고 SVM(support vector machine)과 MAP(maximum $a$ posteriori probability) 분류 방법으로 성능 비교 실험을 하였다. 실험 결과에 따르면 linear 보간법이 모든 주성분 수에 대한 분류율의 평균에서 우세하였고 특히 piecewise cubic Hermite 보간법은 주성분의 수가 5개인 경우에서 SVM 분류율이 약 97.3%로 가장 좋은 성능을 보였다. 또한 이전의 연구 결과와 비교를 통해 제안한 기준선 보정 방법이 혈소판 라만 스펙트럼의 분석에 효과적으로 적용될 수 있음을 확인하였다.

의류 검색용 회전 및 스케일 불변 이미지 분류 및 검색 기술 (Invariant Classification and Detection for Cloth Searching)

  • 황인성;조법근;전승우;최윤식
    • 방송공학회논문지
    • /
    • 제19권3호
    • /
    • pp.396-404
    • /
    • 2014
  • 의류 검색 분야는 의류의 비정형 특성으로 인해 매우 어려운 분야로 인식 오류 및 연산량을 줄이기 위한 노력이 많이 진행되어 왔으나 이를 위한 학습 및 인식 과정 전체에 대한 구체적인 사례가 없고 일부 관련 기술들은 아직 많은 한계를 보이고 있다. 이에 본 논문에서는 입력된 영상에서 사람 객체를 파악하여 착용한 의상으로부터 색상, 무늬, 질감 등 의상이 가질 수 있는 특성 정보를 분석하여, 이를 분류하고 검색하는 방법에 대한 전 과정을 구체적으로 보였다. 특히, 의류의 패턴 및 무늬 등을 구분하기 위한 비정형 의류 검색을 위한 LBPROT_35 디스크립터를 제안하였다. 이 제안 방식은 영상의 통계적 특징을 분석하는 기존의 LBP_ROT(Local Binary Pattern with ROTation-invariant) 방식에 추가로 원 영상에 크기 변화가 생겨도 검색해 낼 수 있도록 하는 특성이 추가된 것이며, 이를 통해 비정형 의류 검색 시 옷이 회전되어 있거나 스케일에 변화가 있어도 높은 검색율을 얻을 수 있게 되었다. 또한 색 공간을 11개의 구간으로 양자화 하는 방식을 이용하여 컬러 분류를 구현하여, 의류 검색에 있어서 중요한 컬러 유사성을 상실하지 않도록 하였다. 한편, 인터넷 상의 의류 사진들로부터 추출한 총 810장의 트레이닝 이미지로 데이터베이스를 구축하고 이들 중 36장을 질의영상으로 테스트 한 결과, 94.4%의 인식률을 보이는 등 Dense-SIFT 대비 높은 인식률을 보였다.

휴대용 전자 후각 장치에서 다채널 마이크로 센서 신호의 영상 정합을 이용한 가스 인식 (Vapor Recognition Using Image Matching of Micro-Array Sensor Response from Portable Electronic Nose)

  • 양윤석
    • 전자공학회논문지SC
    • /
    • 제48권2호
    • /
    • pp.64-70
    • /
    • 2011
  • 휴대용 인공 전자 후각 시스템 (E-nose)의 가스 측정 환경은 실험실 내의 정교하게 제어되는 환경과 달리 온도, 농도, 기체 시료의 유속 등의 외부 요인의 변동이 매우 심하다. 이런 환경에서도 사용 가능한 단순하고 강인하고 정확한 가스 패턴 인식 알고리듬의 개발은 마이크로 바이오 센서의 발달과 함께 확대되고 있는 휴대용 및 소형 측정 진단 시스템에 있어 매우 중요하다. 본 연구에서는 PDA 기반의 휴대용 전자 후각 시스템을 활용해 실제 변화하는 환경에서 다채널 마이크로 센서로부터 감지되는 가스 신호를 수집하고, 여기에 영상 정합 기법을 적용하여 알고리듬의 강인성과 향상된 정확도를 검증하는 것을 목표로 하였다. 제안된 방법을 6종류의 가스 시료에 대한 7채널 마이크로 센서의 휴대 환경 측정 데이터에 적용하고, 기존의 최대 민감도 특징 추출 기법과 비교한 결과, 외부 환경의 변동에 영향 받지 않는 안정된 인식 성능 뿐 아니라 기존의 방법으로 구별하기 어렵던 2 종의 유사한 가스 시료에 대해서도 정확한 구분이 가능함을 보였다. 제안된 방법은 다양한 환경 변화에 노출되는 유비쿼터스 센서 네트워크 (USN)의 데이터 처리에도 쉽게 응용될 수 있을 것이며, 응용 현장에서 높은 안정성과 정확성을 요구하는 휴대용 의료 진단, 환경 감지 기술의 실용화에 큰 도움을 줄 수 있을 것으로 기대한다.

색상의 공간적인 상관관계와 국부적인 푸리에 변환에 기반한 질감 특성을 이용한 영상 검색 (Image Retrieval Using Spatial Color Correlation and Texture Characteristics Based on Local Fourier Transform)

  • 박기태;문영식
    • 대한전자공학회논문지SP
    • /
    • 제44권1호
    • /
    • pp.10-16
    • /
    • 2007
  • 본 논문에서는 색상의 공간적인 상관관계와 질감 모멘트를 이용한 내용기반 영상 검색 기법을 제안한다. 이를 위해, 색상의 공간적인 상관관계를 표현하는 새로운 색상 기술자를 제안하고, 또한 제안된 색상 기술자와 국부적인 푸리에 변환에 기반한 질감 특성을 결합한 영상 검색 방법을 제안한다. 일반적으로 색상의 공간적인 상관관계를 표현하기 위해서 컬러 코렐로그램(color correlogram)이 사용되고 있다. 하지만 컬러 코렐로그램은 중심화소에 따른 이웃한 화소들의 색상 분포를 확률적으로 잘 나타내는 장점이 있지만, 색상의 구조적인 정보를 표현하지 못하는 단점이 있다. 그러므로 본 논문에서는 색상의 분포와 구조적인 정보를 표시할 수 있는 새로운 색상 기술자를 제안한다. 제안하는 새로운 색상 기술자는 중심 화소와 이웃 화소들과의 색상 거리를 계산한 후 최소 거리의 색상과 최대 거리의 색상을 추출한 후 최소-최대 색상 쌍이 이루는 각에 대한 각각의 빈도수를 계산한다. 그런 다음, 각각의 이루는 각에 대해서 최소 거리 색상에 대한 최대 거리 색상들의 평균값과 분산값으로 구성된 새로운 기술자(min-max color correlation descriptor, MMCCD)를 생성한다. 제안한 색상 기술자를 이용하여 검색한 결과는 기존 방법들과 비교했을 경우 정확률에서 최소 5.2%에서 최대 13.21% 향상된 검색 결과를 확인할 수 있었다. 또한, 국부적인 푸리에 변환에 기반한 질감 기술자를 새로운 색상 기술자와 결합하여 특징 벡터의 크기를 절반으로 줄이면서도 새로운 색상 기술자만을 사용할 경우와 비교하여 향상된 검색 결과를 확인할 수 있었다.