• 제목/요약/키워드: 특징점 추출과 추적

검색결과 155건 처리시간 0.022초

모바일 카메라 기기를 이용한 손 제스처 인터페이스 (Hand Gesture Interface Using Mobile Camera Devices)

  • 이찬수;천성용;손명규;이상헌
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권5호
    • /
    • pp.621-625
    • /
    • 2010
  • 본 논문에서는 스마트 폰, PDA와 같은 모바일 장치에 있는 카메라 기기를 이용한 손동작 제스처 인터페이스를 위한 손 움직임 추적 방법을 제안하고 이를 바탕으로 한 손 제스처 인식 시스템을 개발한다. 사용자의 손동작에 따라 카메라가 움직임으로써, 전역 optical flow가 발생하며, 이에 대한 우세한 방향 성분에 대한 움직임만 고려함으로써, 노이즈에 강인한 손움직임 추정이 가능하다. 또한 추정된 손 움직임을 바탕으로 속도 및 가속도 성분을 계산하여 동작위상을 구분하고, 동작상태를 인식하여 연속적인 제스처를 개별제스처로 구분한다. 제스처 인식을 위하여, 움직임 상태에서의 특징들을 추출하여, 동작이 끝나는 시점에서 특징들에 대한 분석을 통하여 동작을 인식한다. 추출된 특징점을 바탕으로 제스처를 인식하기 위하여 SVM(Support vector machine), k-NN(k-nearest neighborhood classifier), 베이시안 인식기를 사용했으며, 14개 제스처에 대한 인식률은 82%에 이른다.

Kalman-Filer를 이용한 효과적인 실시간 시선검출 (A Study on real time Gaze Discimination Using Kalman Fillter)

  • 정유선;홍성수
    • 한국전자통신학회논문지
    • /
    • 제5권4호
    • /
    • pp.399-405
    • /
    • 2010
  • 본 논문에서는 기존의 문제점인 얼굴 움직임이 있을 시 시선 식별이 어려운 점과 사용자에 따른 교정작업이 필요하다는 점을 해결하고자 새로운 시선 식별 시스템을 제안한다. Kalman필터를 사용하여 현재 머리의 위치정보를 이용하여 미래위치를 추정하였고 얼굴의 진위 여부를 판단하기 위해서 얼굴의 특징요소를 구조적 정보와 비교적 처리시간이 빠른 수평, 수직 히스토그램 분석법을 이용하여 얼굴의 요소를 검출한다. 그리고 적외선 조명기를 구성하여 밝은 동공효과를 얻어 동공을 실시간으로 검출, 추적하였고 동공-글린트 벡터를 추출한다.

Facal motion 예측 및 영역 검출을 위한 칼만 필터 알고리즘 (A Study on the Facal motion and for Detection of area Using Kalman Fillter algorithm)

  • 석경휴;박부연
    • 한국전자통신학회논문지
    • /
    • 제6권6호
    • /
    • pp.973-980
    • /
    • 2011
  • 본 논문에서는 기존의 문제점인 얼굴 움직임이 있을 시 시선 식별이 어려운 점과 사용자에 따른 교정작업이 필요하다는 점을 해결하고자 새로운 시선 식별 시스템을 제안한다. Kalman필터를 사용하여 현재 머리의 위치정보를 이용하여 미래위치를 추정하였고 얼굴의 진위 여부를 판단하기 위해서 얼굴의 특징요소를 구조적 정보와 비교적 처리시간이 빠른 수평, 수직 히스토그램 분석법을 이용하여 얼굴의 요소를 검출한다. 그리고 적외선 조명기를 구성하여 밝은 동공효과를 얻어 동공을 실시간으로 검출, 추적하였고 동공-글린트 벡터를 추출한다.

베이지안 통계적 방안 네트워크를 이용한 효과적인 실시간 시선 식별 (Effective real-time identification using Bayesian statistical methods gaze Network)

  • 김성홍;석경휴
    • 한국전자통신학회논문지
    • /
    • 제11권3호
    • /
    • pp.331-338
    • /
    • 2016
  • 본 논문에서는 기존의 문제점인 얼굴 움직임이 있을 시 시선 식별이 어려운 점과 사용자에 따른 교정작업이 필요하다는 점을 해결하고자 새로운 시선 식별 시스템과 얼굴인식에 필요한 GRNN(: Generalized Regression Neural Network) 알고리즘을 제안한다. Kalman필터를 사용하여 현재 머리의 위치정보를 이용하여 미래위치를 추정하였고 얼굴의 진위 여부를 판단하기 위해서 얼굴의 특징요소를 구조적 정보와 비교적 처리시간이 빠른 수평, 수직 히스토그램 분석법을 이용하여 얼굴의 요소를 검출한다. 그리고 적외선 조명기를 구성하여 밝은 동공효과를 얻어 동공을 실시간으로 검출, 추적하였고 동공-글린트 벡터를 추출한다.

객체 추적을 위한 SURF 기반 특이점 추출 및 서술자 생성의 하드웨어 설계 (Hardware Design of SURF-based Feature extraction and description for Object Tracking)

  • 도용식;정용진
    • 전자공학회논문지
    • /
    • 제50권5호
    • /
    • pp.83-93
    • /
    • 2013
  • 최근 영상처리 응용의 일환으로 객체 추적 시스템에 많이 활용되는 SURF 알고리즘의 경우 영상의 회전 및 크기 변화에 강인한 특이점을 추출한다는 특징이 있지만 연산이 복잡하고 연산량이 많아 임베디드 환경에서 IP로 사용되기 위해서는 하드웨어 가속기 개발이 필수적이다. 하지만 이 때 요구되는 내부 메모리 사이즈가 매우 크기 때문에 ASIC이나 SoC 시스템으로 개발 할 때 칩 회로 사이즈가 커서 IP의 가치를 떨어뜨리게 된다. 본 논문에서는 하드웨어 가속기 개발 시 회로면적에 효율적인 설계를 위해 내부 블록메모리 사용량을 줄이고 외부 메모리와 DMA를 사용하여 세분화된 Sub-IP 구조로 설계하는 것에 대해 연구하고 간단한 객체 추적 알고리즘을 개발하여 그 결과를 적용하였다. ARM Cortex-M0, AHB-lite, APB, DMA, SDRAM Controller로 구성된 시스템 환경에서 실험 결과 VGA(640x480)영상에서 SURF 알고리즘의 처리속도는 약 31frame/sec, 블록 메모리의 크기는 81Kbytes, 30nm 공정에서 회로의 크기는 약 74만 게이트 크기로 SoC 칩의 하드웨어 IP로 활용이 가능하였다. SURF와 비슷한 영상처리 알고리즘에서도 본 논문에서 제안하는 설계방법을 적용하면 타겟 어플리케이션에 효율적인 하드웨어 설계를 할 수 있을 것으로 기대된다.

동영상을 이용한 부유구조물 모형의 변위 관측 (Displacement Measurement of a Floating Structure Model Using a Video Data)

  • 한동엽;김현우;김재민
    • 한국측량학회지
    • /
    • 제31권2호
    • /
    • pp.159-164
    • /
    • 2013
  • 움직이는 한 개의 카메라 동영상으로부터 개체의 3차원 위치를 추출할 수 있다고 알려져 있다. 이로부터 캠코더 측정시스템을 이용하여 부유체 모형에 대한 영상기반 모니터링을 수행하였다. 규칙파 및 비규칙파 실험조건에서의 디지털 캠코더 동영상으로부터 프레임 영상을 추출하고, 특징점을 정합하여, 상대적인 3차원 좌표를 획득하였다. 수정된 SURF 기반 정합의 영상 변환 정확도와 규칙파에서 부유체 모델의 영상기반 변위 관측 정확도를 평가하였다. 규칙파의 경우 조파기의 설정값은 3.0sec이고, 영상기반 변위에 의한 주기는 2.993sec이었다. 기계적 오차를 고려할 때 이 두 값은 유사한 결과로 여겨진다. 시각적으로도 X Y Z축으로의 1차원 투영결과나 3차원 공간에서의 결과에서 규칙파의 형상을 볼 수 있었다. 결과적으로 30fps의 일반 디지털 캠코더 동영상을 이용하여 근실시간으로 위치변동을 계산할 수 있었다.

기구 메커니즘의 영상 정보를 이용한 부표 로봇의 영상 안정화 (Digital Image Stabilization of Robot Buoy Using the Image of Mechanism)

  • 임은;명호준;김영진;임충혁;김동환
    • 대한기계학회논문집A
    • /
    • 제36권6호
    • /
    • pp.645-651
    • /
    • 2012
  • 본 논문은 부표로봇에 부착된 카메라 영상의 흔들림을 보정하기 위하여 새로운 방법을 제안한다. 본 연구에서는 부표로봇의 각도측정에 사용하는 자이로 센서의 누적오차 및 노이즈 등의 문제를 해결하기 위해 새로운 기구 메커니즘을 영상처리와 결합한 방법을 제안한다. 이 알고리즘은 특징 점을 추출하기 위한 타깃을 제안한 기구에 부착하여 타깃의 모형 특징을 기반으로 영상을 보정하는 방법이다.

스테레오 비전을 기반으로 한 3차원 입력 장치 (Stereo Vision Based 3D Input Device)

  • 윤상민;김익재;안상철;고한석;김형곤
    • 대한전자공학회논문지SP
    • /
    • 제39권4호
    • /
    • pp.429-441
    • /
    • 2002
  • 본 논문은 실시간으로 3차원 공간상에서의 움직임 정보를 추출할 수 있는 입력 장치를 제안한다. 제안하는 3차원 입력 장치는 스테레오 카메라의 기하학적 구조와 색상, 움직임, 형태상의 특성을 이용하여 복잡한 환경에서 사전 카메라 캘리브레이션 없이 3차원 움직임 정보를 추출할 수 있다. 움직임 추출을 위해서 perspepctive projection 행렬과 perspective distortion 행렬을 이용한 스테레오 카메라의 기하학적 특성을 이용하며, 효과적인 좌우 영상의 특징점 추적 및 추출을 위해 색상 변환(Color transform)과 UPC(Unmatched Pixel Count) 및 이산 칼만 필터(Discrete Kalman Filter)의 효과적인 결합으로 이루어진 MAWUPC(Motion Adaptive Weighted Pixel Count)과 PCA(Principal Component Analysis)로 구성된 알고리즘을 제안한다. 추출된 3차원 공간상에서의 움직임은 가상환경에서의 가상 물체를 제어하거나 사용자 시점의 이동을 나타내는 인터페이스로 사용한다. 스테레오 비전을 이용한 입력 장치는 선으로 연결되지 않기 때문에 사용자가 가상환경에서 작업하기가 편리하며 몰입감을 높일 수 있는 등 보다 효율적인 상호작용을 가능하게 해준다.

Fractional Fourier 변환을 이용한 능동소나 표적 인식 (Active Sonar Target Recognition Using Fractional Fourier Transform)

  • 석종원;김태환;배건성
    • 한국정보통신학회논문지
    • /
    • 제17권11호
    • /
    • pp.2505-2511
    • /
    • 2013
  • 수중환경 하에서 표적을 탐지하고 식별하는 문제는 군사적인 목적은 물론 비군사적 목적으로도 많은 연구가 수행되어 왔다. 수중환경에서의 수중음향 신호가 시간 공간적으로 특성이 변화하며 천해 다중경로 환경을 반영하는 복잡한 특성을 보이는 점으로 인해 능동 표적인식 기술은 매우 어려운 기술로 여겨져 왔다. 또한 실제 데이터 수집의 어려움이 따르게 된다. 본 논문에서는 3차원 하이라이트 분포를 가지는 모델을 이용하여, 능동소나 표적신호를 음선 추적기법을 기반으로 하여 합성하였다. 합성된 표적신호를 대상으로 Fractional Fourier 변환을 적용하여 특징벡터를 추출하였고, 신경회로망 인식기를 이용하여 인식 실험을 수행하였다.

형태학적 특성과 FCM 기반 퍼지 RBF 네트워크를 이용한 컨테이너 식별자 인식 (Identifiers Recognition of Container Image Using Morphological Characteristic and FCM-based Fuzzy RBF Networks)

  • 김태형;성원구;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.252-257
    • /
    • 2007
  • 우리나라의 항만은 수 출입화물의 99.5%를 처리하며, 육로 및 철도 수송 물동량의 기종점 역할을 수행하는 중요한 곳으로서 항만 물동량의 신속한 처리와 자동화 시스템에 의한 비용절감은 엄청난 효과를 가져온다. 따라서 본 논문에서는 항만에서 취급하는 컨테이너를 자동으로 식별할 수 있는 자동화 방법을 제안한다. 실제 컨테이너 영상을 그레이 영상으로 변환한 후, 프리윗 마스크(Prewitt-Mask)를 적용하여 윤곽선을 추출하고 컨테이너를 식별할 수 있는 개별 식별자의 형태학적 특징 정보를 이용하여 식별자 후보영역을 검출한다. 검출된 식별자 후보영역은 개별 식별자 영역외에 잡음 영역이 포함되어 있으므로 4방향 윤곽선 추적 알고리즘과 Grassfire 알고리즘을 적용하여 잡음을 제거하고 개별 식별자들을 각각 객체화한다. 잡음이 제거된 식별자 후보 영역에서 객체화 한 개별 식별자는 컨테이너 식별을 위해 FCM 기반 퍼지 RBF 네트워크를 적용하여 인식한다. 본 논문에서 제안한 컨테이너 식별자 인식 방법의 성능을 평가하기 위해 실제 컨테이너 영상 300장을 대상으로 실험한 결과, 기존의 방법보다 인식 성능이 개선되었음을 확인할 수 있었다.

  • PDF