• Title/Summary/Keyword: 특징점 선택

Search Result 396, Processing Time 0.036 seconds

Online Multi-view Range Image Registration using Geometric and Photometric Feature Tracking (3차원 기하정보 및 특징점 추적을 이용한 다시점 거리영상의 온라인 정합)

  • Baek, Jae-Won;Moon, Jae-Kyoung;Park, Soon-Yong
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.493-502
    • /
    • 2007
  • An on-line registration technique is presented to register multi-view range images for the 3D reconstruction of real objects. Using a range camera, we first acquire range images and photometric images continuously. In the range images, we divide object and background regions using a predefined threshold value. For the coarse registration of the range images, the centroid of the images are used. After refining the registration of range images using a projection-based technique, we use a modified KLT(Kanade-Lucas-Tomasi) tracker to match photometric features in the object images. Using the modified KLT tracker, we can track image features fast and accurately. If a range image fails to register, we acquire new range images and try to register them continuously until the registration process resumes. After enough range images are registered, they are integrated into a 3D model in offline step. Experimental results and error analysis show that the proposed method can be used to reconstruct 3D model very fast and accurately.

Feature Point Filtering Method Based on CS-RANSAC for Efficient Planar Homography Estimating (효과적인 평면 호모그래피 추정을 위한 CS-RANSAC 기반의 특징점 필터링 방법)

  • Kim, Dae-Woo;Yoon, Ui-Nyoung;Jo, Geun-Sik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.6
    • /
    • pp.307-312
    • /
    • 2016
  • Markerless tracking for augmented reality using Homography can augment virtual objects correctly and naturally on live view of real-world environment by using correct pose and direction of camera. The RANSAC algorithm is widely used for estimating Homography. CS-RANSAC algorithm is one of the novel algorithm which cooperates a constraint satisfaction problem(CSP) into RANSAC algorithm for increasing accuracy and decreasing processing time. However, CS-RANSAC algorithm can be degraded performance of calculating Homography that is caused by selecting feature points which estimate low accuracy Homography in the sampling step. In this paper, we propose feature point filtering method based on CS-RANSAC for efficient planar Homography estimating the proposed algorithm evaluate which feature points estimate high accuracy Homography for removing unnecessary feature point from the next sampling step using Symmetric Transfer Error to increase accuracy and decrease processing time. To evaluate our proposed method we have compared our algorithm with the bagic CS-RANSAC algorithm, and basic RANSAC algorithm in terms of processing time, error rate(Symmetric Transfer Error), and inlier rate. The experiment shows that the proposed method produces 5% decrease in processing time, 14% decrease in Symmetric Transfer Error, and higher accurate homography by comparing the basic CS-RANSAC algorithm.

Construction of 2D Image Mosaics Using Quasi-feature Point (유사 특징점을 이용한 모자이킹 영상의 구성)

  • Kim, Dae-Hyeon;Choe, Jong-Su
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.4
    • /
    • pp.381-391
    • /
    • 2001
  • This paper presents an efficient approach to build an image mosaics from image sequences. Unlike general panoramic stitching methods, which usually require some geometrical feature points or solve the iterative nonlinear equations, our algorithm can directly recover the 8-parameter planar perspective transforms. We use four quasi-feature points in order to compute the projective transform between two images. This feature is based on the graylevel distribution and defined in the overlap area between two images. Therefore the proposed algorithm can reduce the total amount of the computation. We also present an algorithm lot efficiently matching the correspondence of the extracted feature. The proposed algorithm is applied to various images to estimate its performance and. the simulation results present that our algorithm can find the correct correspondence and build an image mosaics.

  • PDF

Feature Extraction of Images By Using Independent Component Analysis of Fixed-Point Algorithm Based on Secant Method (할선법에 기초한 고정점 학습알고리즘의 독립성분분석을 이용한 영상의 특징추출)

  • 조용현;민성재;김아람;오정은
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.137-140
    • /
    • 2002
  • 본 연구에서는 할선법에 기초한 고정점 알고리즘의 독립성분분석기법을 이용한 영상의 특징추출을 제안하였다. 여기서 할선법은 엔트로피 최적화를 위한 목적함수의 근을 구하기 위해 단순히 함수 값만을 이용하여 계산을 간략하게 함으로써 역혼합행렬의 경신속도를 빠르게 하기 위함이다. 제안된 기법을 256×256 픽셀(pixel)의 10개 지문영상들로부터 선택된 16×16 픽셀의 20,000개 패치를 대상으로 시뮬레이션 한 결과. 추출된 16×16 픽셀의 160개 독립성분 기저벡터 각각은 지문영상들에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인할 수 있었다.

  • PDF

Feature Extraction of Single Images by Using Independent Component Analysis Based on Neuarl Networks (신경망 기반 독립성분분석에 의한 단일영상들의 특징추출)

  • 조용현;민성재;김아람;오정은
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.370-373
    • /
    • 2002
  • 본 논문에서는 단일영상들에 포함된 특징들을 효과적으로 추출하기 위하여 신경망 기반 독립성분분석기법의 이용을 제안하였다. 여기서 독립성분의 효과적인 분석을 위해 고정점 학습알고리즘의 신경망 기반 기법을 이용하였다. 이는 수치적 기법에 비해 신경망이 가지는 ?ㄱ습 등의 우수한 속성과 뉴우턴법의 고정점 알고리즘이 가지는 빠르고 간단한 계산속성을 동시에 살리기 위함이다. 제안된 기법을 512x412 픽셀의 L둠 영상과 480x225 픽셀의 지폐영상 각각에서 선택된 1,000개의 영상패치들을 대상으로 시뮬레이션 한 결과, 추출된 16x16 펙셀의 160개 독립성분 기저벡터는 지문영상과 지폐영상 각각에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인할 수 있었다.

An Efficient Feature Extraction of Finger Images by Using Independent Component Analysis Based on Neuarl Networks (신경망 기반 독립성분분석을 이용한 지문영상의 효과적인 특징추출)

  • 조용현;민성재
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.291-294
    • /
    • 2002
  • 본 논문에서는 신경망 기반 독립성분분석기법을 이용하여 지문영상에 포함된 특징들을 효과적으로 추출하는 방법을 제안하였다. 여기서 독립성분의 효과적인 분석을 위해 고정점 학습알고리즘의 신경망 기반 기법을 이용하였다. 이는 수치적 기법에 비해 신경망이 가지는 학습 등의 우수한 속성과 뉴우턴법의 고정점 알고리즘이 가지는 빠르고 간단한 계산속성을 동시에 살리기 위함이다. 제안된 기법을 256$\times$256 픽셀의 8개 지문영상에서 선택된 10,000개의 영상패치를 대상으로 시뮬레이션 한 결과, 추출된 16$\times$16 펙셀의 160개 독립성분 기저벡터는 지문영상들에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인할 수 있었다.

Vehicle Detection Using Optimal Features for Adaboost (Adaboost 최적 특징점을 이용한 차량 검출)

  • Kim, Gyu-Yeong;Lee, Geun-Hoo;Kim, Jae-Ho;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1129-1135
    • /
    • 2013
  • A new vehicle detection algorithm based on the multiple optimal Adaboost classifiers with optimal feature selection is proposed. It consists of two major modules: 1) Theoretical DDISF(Distance Dependent Image Scaling Factor) based image scaling by site modeling of the installed cameras. and 2) optimal features selection by Haar-like feature analysis depending on the distance of the vehicles. The experimental results of the proposed algorithm shows improved recognition rate compare to the previous methods for vehicles and non-vehicles. The proposed algorithm shows about 96.43% detection rate and about 3.77% false alarm rate. These are 3.69% and 1.28% improvement compared to the standard Adaboost algorithmt.

Performance Evaluation of Car Model Recognition System Using HOG and Artificial Neural Network (HOG와 인공신경망을 이용한 자동차 모델 인식 시스템 성능 분석)

  • Park, Ki-Wan;Bang, Ji-Sung;Kim, Byeong-Man
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.5
    • /
    • pp.1-10
    • /
    • 2016
  • In this paper, a car model recognition system using image processing and machine learning is proposed and it's performance is also evaluated. The system recognizes the front of car because the front of car is different for every car model and manufacturer, and difficult to remodel. The proposed method extracts HOG features from training data set, then builds classification model by the HOG features. If user takes photo of the front of car, then HOG features are extracted from the photo image and are used to determine the model of car based on the trained classification model. Experimental results show a high average recognition rate of 98%.

Examining the relationship between the types of color selecting behavior and self-esteem in Mabinogi, the on-line game (마비노기에서의 색 선택 행동 유형과 자아존중감과의 관계)

  • Jang, You-Won;Doh, Young-Yim
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02b
    • /
    • pp.651-655
    • /
    • 2007
  • 카툰 렌더링 그래픽을 기반으로 한 온라인 RPG 게임인 마비노기에서는 게임이용자들이 염색 시스템을 통하여 의복아이템에 자신들이 원하는 색을 자유롭게 표현할 수 있다. 마비노기에서 색에 관련된 주목할 만한 현상은유행색이 존재하고 색에 따라 같은 아이템의 가격이 달라진다는 점이다. 유행색이 존재하는 것은 현실과 비슷하지만 같은 아이템이 색에 따라 가격이 달라지는 것은 현실에서는 보기 드물다. 이는 현실과 비슷하면서도 심리적인 속성이 다른 사이버공간만의 특징이라고 생각해 볼 수 있다. 따라서 마비노기에서 게임이용자들이 색을 선택하고 사용할 때 작용하는 심리기제가 존재할 것이라고 가정해 볼 수 있다. 이에 본 연구에서는 마비노기에서 색 선택 행동의 심리적 유형을 확인하고 유형별 특징을 알아보기 위해 자아존중감을 측정하였다. 예비 조사를 통해 게임이용자 20명과 온라인 인터뷰를 실시하여 색 사용 경험을 추출하고, 추출한 경험을 바탕으로 18문항의 색 선택 행동 문항을 구성하였다. 본 조사에서는 온라인 설문으로 129명의 게임이용자를 대상으로 색 선택 행동과 자아존중감을 측정하였다. 연구 결과 색 선택 행동은 4개의 요인-색채 둔감성, 유행추종, 개성표현, 캐릭터이미지와의 적합성-으로 구분되었다. 색선택 행동 4개의 하위 요인을 기준으로 군집분석한 결과 색 선택 행동 유형은 각각 색 분화형, 유행추종형, 색 둔감형으로 구분되었다. 색 선택 행동 유형과 자아존중감과의 관계에서는 자아존중감 하위 범주 중 부정적인 자기평가, 타인의 의견에 대한 걱정, 의존성의 세 가지 하위 범주에서 색 선택 행동 유형에 따른 차이가 유의미하게 나타났다. 한편 자의식 차원에서는 색 선택 행동 유형간 유의미한 차이가 발견되지 않았다. 유행추종형은 다른 두 유형에 비해 상대적으로 자아존중감 수준이 낮음을 확인할 수 있었다. 반대로 색 둔감형은 다른 두 유형에 비해 상대적으로 자아 존중감 수준이 높았다. 색 분화형은 유행추종형과 색 둔감형의 중간 수준의 자아존중감을 볼 수 있었다. 유행추종형은 자기의 외부에서, 색 둔감형은 자기의 내부에서 색과 관련된 자신에 대한 가치감의 소재와 근원을 찾는 특성이 있다고 해석할 수 있다. 본 연구는 온라인 RPG 게임에서 게임이용자들의 색 선택의 심리적 기제를 확인하고 색 선택 유형별로 자아존중감과의 관계를 확인함으로써 색 선택 행동의 심리적 기제를 밝히려는 기초연구라는 점에 의의가 있다. 추후에는 게임이용자들의 색 선택 행동을 보다 포괄적으로 이해하기 위해 게임이용자들이 가지고 있는 공통적인 색이미지와 개별적인 색이미지 및 색이미지의 심리적 구조를 알아보기 위한 색채감성연구가 필요할 것이다. 이러한 연구들은 게임을 제작할 때 캐릭터 디자인과 아이템 디자인에 어떠한 색을 사용해야 되는지 방향을 설정하는데 도움을 줄 수 있을 것이다.

  • PDF

Realistic 3D Reconstruction Method from an Image Sequence (순차 이미지를 이용한 3차원 물체의 사실적인 복원방법)

  • 김승권;김강현;전희성
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.326-329
    • /
    • 2003
  • 영상이나 이미지로부터 3차원 정보를 복원해내기 위한 기술은 컴퓨터 비젼과 그래픽스 분야에서 많은 연구의 대상이 되어 왔다. 본 연구에서는 연속적으로 획득된 여러 장의 이미지로부터 특징점을 추출한 후 그 점들로부터 프로젝티브 복원을 하고 카메라 파라메터를 계산하여 유클리디언 공간으로 변환시켜 3차원 데이터를 계산하는 방법을 구현하였다. 계산된 3차원 데이터와 가장 적합한 폴리곤을 선택하고 텍스쳐 매핑을 하는 방법을 결합하여 사실적인 3차원 모델을 생성할 수 있었다.

  • PDF