• 제목/요약/키워드: 특징신호

검색결과 1,715건 처리시간 0.028초

최대 엔트리법을 이용한 음향 신호의 특징 피크의 검출 (Feature detection of peaks of sound signal using MEM)

  • 성종훈;김영길
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1998년도 추계종합학술대회
    • /
    • pp.562-564
    • /
    • 1998
  • 보통 음향 신호를 분석을 할 때에 시간영역의 신호를 주파수영역의 신호로 FFT 변환을 해서 분석을 한다. 이렇게 단순히 FFT를 해서 주파수영역의 신호에서 어떤 특징적인 점을 찾기가 매우 어렵다. 그래서 원 신호를 FFT를 하지 않고 선형 예측 분석이라는 방법을 적용하여 신호에 특징적인 피크 점들을 구하면 쉬운 방법이 된다. 본 논문에서는 이러한 음향의 신호를 분석을 할 때에 선형 예측 분석법을 이용하면 신호에서 특징적인 피크들을 구하기가 용이함을 보이고 신호의 특징 피크 점들을 통계적으로 처리하여 분석을 해보았다.

  • PDF

상관계수 가중치를 이용한 베어링 수명예측 특징신호 추출 (Feature Extraction for Bearing Prognostics using Weighted Correlation Coefficient)

  • 김석구;임채영;최주호
    • 한국전산구조공학회논문집
    • /
    • 제31권1호
    • /
    • pp.63-69
    • /
    • 2018
  • 베어링은 많은 회전체에서 사용되는 핵심부품으로, 예기치 않은 고장을 방지하기 위해 많은 연구가 집중되고 있다. 이때 중요한 것은 되도록 초기에 건전성 상태를 잘 나타내는 적절한 특징신호를 추출하는 것이다. 그러나 기존의 연구들은 주로 진단관점에서 특징신호를 추출하여 고장예지에는 적합하지 않은 측면이 있었다. 본 논문에서는 이러한 문제를 극복하기 위해 베어링 고장 주파수의 에너지와 시간 사이의 상관계수 가중 합을 이용하여 베어링 수명 예측에 용이한 특징신호를 추출하는 방법을 개발하였다. 그 결과 일반적으로 고장진단에서 많이 사용되고 있는 특징신호인 RMS에 비해서 결함 초기부터 단조로운 증가 경향의 특징신호를 추출함을 알 수 있었다. 이를 입증하기 위해서 NASA Ames에서 제공한 IMS bearing 진동 데이터를 이용하였고 제시한 특징신호와 일반적인 RMS와 의 거동을 비교하여 유효성을 검증하였다.

분절 특징을 이용한 음성 신호의 모델링 (Modeling of Speech Signals Using Segmental-Features)

  • 윤영선;오영환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.371-373
    • /
    • 2000
  • 본 논문에서는 분절 특징을 모수적 궤적 모델을 이용하여 표현하고, 이 특징을 분절 HMM(segmental HMM)의 입력으로 하는 음성 신호의 모델링 방식을 제안한다. 분절 특징은 음성의 경향을 나타내는 궤적으로 표현되고, 그 궤적은 연속되는 프레임 상에서 전이 정보를 포함하도록 디자인 행렬과 다항식의 회귀 함수를 이용하여 구해진다. 이 궤적을 분절 HMM에 적용하기 위하여, 외적 분절 변이와 내적 분절 변이에 대한 확률 분포 표현을 개선하였다. 제안된 방법의 효과를 살펴보기 위하여 TIMIT 데이터 베이스를 이용하여 실험한 결과, 제안된 분절 특징은 음성 신호의 인접한 프레임간의 상관관계를 표현하는 동적 특징과 같은 효과를 보였으며, 1차 미분계수를 포함하여 분절 특징을 구한 경우에는 기존의 특징 표현보다 좋은 성능을 보였다.

  • PDF

분자 MR영상에서 UTE 신호의 효용성 평가 (Evaluation of UTE Signal Acquisition Efficacy in Molecular MRI)

  • 이상복;최규락
    • 한국방사선학회논문지
    • /
    • 제6권4호
    • /
    • pp.305-311
    • /
    • 2012
  • 본 연구에서는 MR영상의 신호획득 기법 중 TE(Time of Echo)신호와 움직임에 의한 인공물을 줄이기 위하여 신호수신 시간을 짧게 하는 UTE(Ultra Time of Echo)기법으로 신호를 획득하여 TE신호와 UTE신호의 차이를 공학적 도구인 MatLab의 DWT(Discrete Wavelet Transform) ToolBox를 이용하여 프로그램밍을 하여 특징을 추출한 후 UTE 기법의 유용성을 평가하고자 하였다. 추출된 특징값을 이용하여 TE신호(T2) 특징값과 UTE신호 특징값을 비교한 결과 거의 일치함을 알 수 있었다.

이종 생체 신호를 이용한 심장 박동 검출 기법 연구 (Heart Beat Detection Method Using Heterogeneous Physiological Signal Analysis)

  • 유종민;전태균;전문구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.737-740
    • /
    • 2014
  • 본 연구는 이종 생체 신호를 이용하여 심장 박동 신호를 검출하도록 고안되었다. 제안 알고리즘은 이종 생체 신호의 특징점을 추출하는 과정과 이를 이용하여 심장 박동의 특징점을 추정하는 과정으로 구성되어 있다. 특히, electrocardiogram(ECG)의 특징점과 동일한 위상의 잡음 신호로 인해 특징점 추출이 난해한 경우 이종 생체 신호를 이용해 특징점의 위치를 추정하는 방법을 사용하였다. Physionet 의 Challenge/2014 데이터베이스에서 잡음이 존재하는 레코드를 대상으로 수행한 심장 박동 검출 실험에서 Sensitivity 는 98.97%, positive predictivity 는 99.54%를 기록했다.

색상 및 형태 특징을 고려한 교통신호 고속 인식 알고리즘 (Fast Recognition Algorithm of Traffic Light Sign by Color and Shape Feature)

  • 김진산;권태호;김재은;정경훈
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.200-203
    • /
    • 2016
  • 최근 자율주행자동차에 대한 관심이 증가함에 따라 교통 상황을 인식하는 방법에 대한 연구도 활발하게 진행되고 있다. 특히 교통신호등의 인식은 치명적인 결과를 야기하는 교통사고와 밀접하게 연관된다는 점에서 중요성이 더욱 부각되고 있다. 본 논문에서는 컴퓨터 비전 시스템을 기반으로 한 교통신호등 인식 방법을 제안한다. 차선, 표지판 등과는 다르게 교통신호등은 빛을 발하는 특징이 있으며 그 모양과 형태 또한 규격화 되어 있다. 이러한 특징 중 색상과 형태 특징을 이용하여 두 단계의 추출과정을 거쳐 교통신호등을 인식한다. 먼저 HSV 색 공간에서 적색, 녹색, 주황색의 빛을 발하는 영역을 찾아낸 뒤, 신호의 원형 특징을 이용해 가로, 세로 사이즈와 크기로 신호의 후보를 추출한다. 다음, 신호등의 검은 박스 영역을 찾기 위해 추출한 신호 후보군의 주변부가 검정색인지를 확인한다. 최종적으로 신호등의 박스 부분을 검출하여 신호를 발하는 위치를 기반으로 신호를 인식한다. 실험결과 많은 계산량을 요구하는 기계학습을 사용하지 않고도 실시간 처리와 높은 인식률로 교통 신호를 인식할 수 있음을 확인하였다.

  • PDF

고체내부의 결함형태에 따른 초음파 신호의 특징추출 (The Features Extraction of Ultrasonic Signal to Various Type of Defects in Solid)

  • 신진섭;전계석
    • 한국음향학회지
    • /
    • 제14권6호
    • /
    • pp.62-67
    • /
    • 1995
  • 본 논문에서는 금속내부에 존재하는 결함의 다양한 형태로부터 반사된 초음파 신호를 디지탈 신호처리에 의하여 특징추출하는 방법을 연구분석하였다. 다양한 형태의 결함으로부터 반사된 초음파 신호는 잡음 등의 영향으로 그 특징의 구별이 애매하므로 자기 회기법(auto-regressive)을 이용한 위너 필터링(Wiener filtering)과 최소 절대치 노름(least-absolute-values norm) 기법을 사용하여 신호의 특징을 추출하고 상호 비교분석하였다. 실험에서는 알루미늄 시편에 평면결함, 사각결함, 원형결함의 세가지 결함형태를 제작하였으며, 초음파를 입사하고 펄스-에코 방법에 의하여 반사신호를 측정하였다. 반사신호의 디지탈 신호처리 결과, 이러한 특징추출방법은 다양한 형태의 결함으로부터 반사된 신호를 효율적으로 분류 할 수 있었다.

  • PDF

콘덴츠 분류를 위한 오디오 신호 특징 추출 기술 (The Technology of the Audio Feature Extraction for Classifying Contents)

  • 임재덕;한승완;최병철;정병호
    • 전자통신동향분석
    • /
    • 제24권6호
    • /
    • pp.121-132
    • /
    • 2009
  • 음성을 비롯하여 음악, 음향 등을 포함하는 오디오 신호는 멀티미디어 콘텐츠를 구성하는 매우 중요한 미디어 타입이며, 미디어 기록 매체와 네트워크의 발전으로 인한 데이터 양의 급격한 증대는 수동적 관리의 어려움을 유발하게 되고, 이로 인해 오디오 신호를 자동으로 구분하는 기술은 매우 중요한 기술로 인식되고 있다. 다양한 오디오 신호를 분류하기 위한 오디오 신호의 특징을 추출하는 기술은 많은 연구들을 통해 발전하여 왔으며, 본 논문은 오디오 콘텐츠 자동 분류에서 높은 성능을 갖는 오디오 신호 특징 추출에 대해서 분석한다. 그리고 특징 분류기 중에서 안정적인 성능을 가지는 SVM을 사용한 오디오 신호 분류 방법을 알아본다.

웨이브렛 변환을 이용한 ECG신호의 잡음제거와 특징점 검출 (Noise Reduction and Characteristic Points Detectoin of ECG Signal using Wavelet Transforms)

  • 장두봉;이상민;신태민;이건기
    • 한국정보통신학회논문지
    • /
    • 제2권1호
    • /
    • pp.11-17
    • /
    • 1998
  • ECG신호가 임상적으로 환자의 심장활동에 관련된 여러 정보를 의사에게 제공한다는 점에서 ECG 신호의 검출은 중요한 환자 진단방법의 하나이다. 특히 QRS복합파형, P파, T파 등의 위치와 각파 간의 간격에 의미있는 정보가 담겨져 있어 의공학 분야에서 ECG신호의 특징점 검출에 관련된 여러 연구들이 있어 왔다. 기존의 ECG신호의 특징점 검출 방법은 정상파형의 경우에는 만족할 만한 성능을 보여 주는데 반해 잡음이 혼입된 ECG신호로부터 정상 ECG신호를 분리해 내는데 있어 성능의 한계를 가진다. 본 논문에서는 최근 공학분야에서 그 활용 영역이 확대되고 있는 웨이브렛 변환 기법을 ECG신호의 특징점 검출과 잡음제거에 적용하여, 잡음이 혼입된 ECG신호의 특징점 검출과 정상 파형 복원을 수행하였다.

  • PDF

시불변 특징점 추출 및 정합을 이용한 주기 신호의 길이 보정 기법 (A Method to Adjust Cyclic Signal Length Using Time Invariant Feature Point Extraction and Matching(TIFEM))

  • 한아향;박정술;김성식;백준걸
    • 한국시뮬레이션학회논문지
    • /
    • 제19권4호
    • /
    • pp.111-122
    • /
    • 2010
  • 본 연구에서는 여러 제조 공정에서 발생하는 주기 신호의 불규칙한 길이를 보정하기 위하여 시불변 특징점 추출 및 정합(Time Invariant Feature point Extraction and Matching, 이하 TIFEM)을 이용한 길이보정 알고리즘을 제안한다. 신호 중간에 길이 변동이 발생 하는 주기신호의 경우 정확하게 길이를 보정하기 위해서는 더 많은 수의 특징점이 필요하며, 추출된 특징점은 신호의 패턴 정보를 포함하고 시간과 크기에 불변한 성질을 가져야 한다. 본 연구에서 제안하는 TIFEM알고리즘은 위의 성질을 가지는 신호 고유의 특성을 추출하고 추출한 특성들을 각각 시점에 해당하는 특성 벡터로 구성한다. 구성된 특성 벡터에서 유효한 벡터만을 걸러내어 길이보정을 위한 특징점으로 선정한다. 선정된 특징점들을 정합한 후 구간별로 길이를 보정하여 보다 정확한 주기 신호의 길이보정을 수행한다. 제안한 알고리즘의 성능을 검증하기 위하여 실제 반도체 공정에서 발생되는 3종류의 신호를 모방하여 생성한 실험데이터를 이용하여 실험을 수행하였다.