• Title/Summary/Keyword: 특징선

Search Result 1,662, Processing Time 0.032 seconds

Shadow casting method using direction and edge feature of the object region (방향성과 경계선을 이용한 그림자 제거 방법)

  • Lee J.C;Lee J.W;Cho J.H;Kim S.H
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.916-918
    • /
    • 2005
  • 본 논문에서는 감시 시스템 내에서 검출된 객체에 대해 정확한 특징벡터를 추출하기 위한 그림자 제거(shadow casting)방법을 제안한다. 그림자에 의해 부정확한 특징벡터를 가지게 되는 객체는 동일한 객체임에도 불구하고 서로 다른 객체로 인식하는 잘못된 결과를 가져온다. 이러한 문제점을 해결하기 위해 추출된 객체의 경계선(edge)의 수직 히스토그램과 그림자의 방향성을 사용하여 그림자를 제거한다.

  • PDF

Image Extraction Method in 3D Space for Game Player's Face Detection (게임 사용자 얼굴 검출을 위한 3D 공간 영상 추출 기법)

  • Yoo, Chae-Gon;Jung, Chang-Sung;Hwang, Chi-Jung
    • Journal of Korea Game Society
    • /
    • v.1 no.1
    • /
    • pp.49-54
    • /
    • 2001
  • 본 논문에서는 복잡한 랜덤 배경 하에서 위치하고 있는 게임 플레이어의 얼굴 영상을 스테레오 매칭을 이용하여 배경과 분리하여 추출할 수 있는 방법에 대하여 기술한다. 사람과의 상호 작용이 필요한 게임일수록 사람의 동작이나 각 부위에 대한 인식이 필요하다. 이 방법은 게임 이외에도 보안 시스템, 의류 시뮬레이션, 3D 모델링 그리고 로보틱스와 같은 분야에 적용될 수 있다. 스테레오 매칭에 관해서는 많은 연구가 있어왔으며, 기본적으로 영역기반 방법과 특징기반 방법으로 분류될 수 있다. 본 논문의 제안 방법 에서는 영역기반 방법으로 처리를 시작하고, 다단계 크기의 윈도우를 적용하여 물체의 경계선을 찾는 작업을 진행한다. 각 윈도우 크기에 대하여 유사성 커브가 생성되며, 이 값은 물체의 경계선을 판별하는 특징으로 사용된다. 전단계에서 생성된 코어스(coarse) 영역은 유사성 커브 방식에 의하여 머지 작업을 거치며, 최종적으로 대상 물체의 영상을 추출하게 된다.

  • PDF

The quantitative assessment of lumbar multifidus using ultrasound imaging (초음파 영상에서 다열근 측정)

  • Kim, Jun-Woo;Lee, Hae-Jung;Shin, Sang-Ho;Kim, Kwang-Baek
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.413-416
    • /
    • 2010
  • 본 논문에서는 요부 영상에서 근육을 추출하는 방법을 제안한다. 제안된 방법은 초음파 영상에서 왜곡이 존재하지 않는 영역을 측정 할 근육 영역을 설정한 후, 초기 초음파 영상에서 불필요한 잡음을 제거하고 Ends-in Search Stretching 기법을 적용하여 근육 영역의 명암 대비를 강조한다. 그리고 형태학적 특징을 이용하여 등뼈 영역과 피하지방을 분리한 후, 4 방향 윤곽선 추적 알고리즘을 적용하여 피하지방의 하단 부분을 추출한다. 또한 최대 및 최소 명암도를 조정하여 얻어진 등뼈의 후보 영역에서 형태학적 특징을 이용하여 잡음을 제거하고 최종적으로 등뼈 영역을 추출한다. 추출된 등뼈 영역에 대해 피하지방층과 등뼈 사이를 근육의 두께로 측정한다. 본 연구에서 제안된 방법을 요부의 초음파 영상에 적용하여 근육 영역을 추출한 결과, 제안된 방법이 초음파 영상에서 근육 영역들의 두께를 측정하는데 기존의 근육 측정 방법보다 효과적인 것을 확인 할 수 있었다.

  • PDF

Car Identification - Interval Size (차종 식별 - 간격 크기에 따른)

  • Kim, Do-Kwan;Shi, Seong-Yoon;Lee, Hyun-Chang;Rhee, Yang-Won;Park, Ki-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.107-108
    • /
    • 2016
  • Our study proposes the methods of distinguishing vehicle types using the interval and size of the car. The car videos converts the basic RGB model to Gray model for use and through Canny Edge Direction, it eliminates the background of the car while obtaining feature points through the detection of contours.

  • PDF

Automatic detection of pulmonary nodules in X-ray chest images (폐의 X선 영상에서의 노쥴 자동 탐지 기법)

  • Seong, Won;Park, Jong-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.767-770
    • /
    • 2002
  • 일반적으로 방사선 의사들(radialogists)이 폐 노쥴(pulmonary nodule)을 탐지하는 데는 실제적으로 30%의 실패율을 가진다고 알려져 있다. 만약 자동화된 시스템이 체스트 영상에서 의심스런 노쥴들의 위치들을 방사선 의사에게 알려줄 수 있다면 잘못 판단되는 노쥴들의 수를 잠재적으로 줄일 수 있다. 우리는 형태학적 필터들(morphological filters)과 두가지 특징-추출(feature-extraction) 기술들을 포함하는 컴퓨터 자동 처리 시스템을 구현하였다. 본 시스템에서는 첫째로 형태학적 필터(morphological filtering) 처리를 행한다. 이 과정은 원래의 영상에 침식(erosion)과 확장 (dilation)을 연이어서 행하는 것으로 처리가 어려운 X 선 영상을 좀 더 다루기 쉬운 상태로 바꿔주는 역할을 하게 된다. 둘째는 일차적으로 노쥴로서 컴퓨터에 선택된 의심 부분에 가해주는 특징-추출 테스트로서 이 작용은 노쥴로 감지되었으나 실제로는 노쥴이 아닌 경우인 false-positive 갑지들을 줄이기 위해서 사용된다. 그리하여 본 시스템은 노쥴의 정확한 판독이 어려운 폐의 X 선 영상에 적용되어 false-positive 들을 효과적으로 줄임으로써 보다 효율적인 폐 노쥴의 탐지를 가능하게 하였다.

  • PDF

Fuzzy Classifier and Bispectrum for Invariant 2-D Shape Recognition (2차원 불변 영상 인식을 위한 퍼지 분류기와 바이스펙트럼)

  • 한수환;우영운
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.3
    • /
    • pp.241-252
    • /
    • 2000
  • In this paper, a translation, rotation and scale invariant system for the recognition of closed 2-D images using the bispectrum of a contour sequence and a weighted fuzzy classifier is derived and compared with the recognition process using one of the competitive neural algorithm, called a LVQ( Loaming Vector Quantization). The bispectrum based on third order cumulants is applied to the contour sequences of an image to extract fifteen feature vectors for each planar image. These bispectral feature vectors, which are invariant to shape translation, rotation and scale transformation, can be used to the represent two-dimensional planar images and are fed into a weighted fuzzy classifier. The experimental processes with eight different shapes of aircraft images are presented to illustrate a relatively high performance of the proposed recognition system.

  • PDF

심근경색 병변에 따른 심실의 전기역학적 특성 분석

  • Baek, Dong-Geun;Im, Gi-Mu
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.656-661
    • /
    • 2017
  • 이 연구의 목적은 심근경색의 발생 위치와 그 부피에 따른 심실의 여러 가지 생리학적인 특성들을 분석하는 데에 있다. 우리는 심근경색의 발생 사례를 총 8가지로 분류하여 각 병변의 발생 위치와 부피를 달리 하였으며 대조군으로 정상 상태의 심장을 두어 기준 값으로부터 각 사례 별로 전체 심장 대비 심근경색 부위가 차지하는 비율, 압력-부피 선도, 1회 박출량(SV), 분당 심박출량(CO), ATP 소모율, 박출 효율(EF), 1주기의 1ATP 당 소모한 일의 양(SW/ATP) 등을 조사하였다. 또한 본 연구는 심근경색의 발생 위치와 부피에 따른 이의 심각성을 나타내고자 했기 때문에, 각 사례 별로 압력-부피 선도, 들의 변화율 및 세포가 괴사한 정도에 따른 수치 변화율을 퍼센트(%)로 표시하여 그 정도를 조사하였다. 심근경색을 가진 심장은 그렇지 않은 심장에 비해서, ATP 소모량이나 EF의 경우 각 사례 마다 상이한 결과를 가지기는 하지만, 대체적으로 더 적은 1주기 일량(SW) 및 1회 박출량(SV) 분포를 보였으며 SW/ATP의 값은 거의 일괄적으로 감소하였음을 확인하였는데, 이는 심실의 효율이 정상 심장에 비해서 떨어졌음을 의미한다. 결과적으로, 본 연구는 심근경색의 생리학적 특징들을 재확인함과 동시에 임상적으로 확인할 수 없는 특징들의 수학적인 분석과 더불어 심근경색의 공간 특징적인 현상들을 밝히고 있다.

  • PDF

Passport Recognition using PCA-based Face Verification and SOM Algorithm (PCA 기반 얼굴 인증과 SOM 알고리즘을 이용한 여권 인식)

  • Lee Sang-Soo;Jang Do-Won;Kim Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.285-290
    • /
    • 2006
  • 본 논문에서는 출입국자 관리의 효율성과 체계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하고 위조 여권을 판별할 수 있는 여권 인식 및 얼굴 인증 방법을 제안한다. 본 논문의 구성은 여권 인식과 얼굴 인증 부분으로 구성되며, 여권 인식 부분에서는 소벨 연산자, 수평 최소값 필터 등을 적용한 후, 8 방향 윤곽선 추적 알고리즘을 적용하여 코드의 문자열 영역을 추출하고 기울기를 보정한다. 추출된 문자열은 반복 이진화 방법을 적용하여 코드의 문자열 영역을 이진화 한다. 이진화된 문자열 영역에 대해 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한 후에 SOM(Self-Organizing Maps) 알고리즘을 적용하여 여권 코드를 인식한다. 얼굴 인증 부분에서는 여권 사진 영역의 특징을 이용하여 얼굴 후보 영역을 추출한 후, RGB와 YCbCr 색공간에서 피부색 정보를 이용하여 얼굴 영역을 추출한다. 추출된 얼굴 영역은 PCA(Principal Component Analysis) 알고리즘을 적용하여 특징 벡터를 구하고 여권 코드가 인식된 결과를 바탕으로 여권 소지자의 데이터 베이스에 있는 얼굴 영상의 특징벡터와의 거리 값을 계산하여 사진 위조 여부를 판별한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능 평가를 위하여 원본 여권의 얼굴 부분을 위조한 여권과 기울어진 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권의 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.

  • PDF

Ridge Feature Extraction of Fingerprint Using Sequential Labeling (순차적 레이블링을 이용한 지문 융선 특징 검출)

  • 오재윤;엄재원;최태영
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.3
    • /
    • pp.217-226
    • /
    • 2003
  • A novel fingerprint ridge feature extraction using sequential labeling of thinned fingerprint image is proposed, which is invariant to position translation, scaling, and rotation. the proposed algorithm labels ridges of thinned fingerprint image sequentially using vertical line that goes through fingerprint core point. Then, we extract a feature from each labeled ridge and the extraction process is based on the type fo the ridge and a minutiae ridge angle in the ridge. The feature extracted through this process enables us to find out the kind of various minutiae and minutiae angle. As a result of the experiment using two thinned fingerprint images, we finally confirm that proposed algorithm is not related to position translation, scaling, and rotation.

Feature-based Image Stippling (특징 기반의 영상 점묘화 기법)

  • Kim, Dong-Yeon;Son, Min-Jung;Lee, Yun-Jin;Kang, Henry;Lee, Seung-Yong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06b
    • /
    • pp.261-264
    • /
    • 2008
  • 본 논문에서는 영상의 중요한 특징을 강조하는 점의 분포를 가지는 자동화된 점묘화(stippling) 제작 방법을 제시한다. 예술가의 점묘화 일러스트 작품을 살펴보면 영상의 특징을 강조하는 방향성이 있는 점들을 사용해서 회화적인 느낌을 살림과 동시에 사물의 형태를 좀 더 명백히 파악할 수 있게 해준다. 하지만 컴퓨터 그래픽스 분야에서 연구된 기존 점묘화 기법 알고리즘은 입력 영상의 특징적인 형태를 고려하지 않고 색조에 따른 점의 밀도 변화만으로 사물을 표현하기 때문에 사물의 형태가 제대로 드러나지 않는 단점이 있다. 본 방법에서는 점의 분포가 대상의 형태를 반영하며 분포되게 하는 알고리즘을 적용하여 사물의 특징적인 형태를 강조한다. 이를 위해 영상의 특징선으로부터 추출한 특징 흐름(feature flow)을 따라 점을 배치시키는 방법을 사용한다. 그리고 입력 영상의 색조(tone)를 점묘화에 반영하기 위해 점의 크기가 입력 영상의 색조에 따라 자동으로 결정되도록 한다.

  • PDF