• Title/Summary/Keyword: 특징벡터 선택 알고리즘

Search Result 69, Processing Time 0.025 seconds

Fuzzy RBF Network using FCM (FCM을 이용한 퍼지 RBF 네트워크)

  • 김재용;이상수;이준행;김광백
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.158-161
    • /
    • 2004
  • RBF 네트워크의 중간층은 클러스터링하는 층이다. 즉, 이 충의 목적은 주어진 자료 집합을 유사한 클러스터들(homogenous cluster)로 분류하는 것이다. 여기서 유사하다는 것은 입력 데이터들에 대한 특징 벡터 공간사이에서 한 클러스터내의 벡터들 간에 거리를 측정하여 정해진 반경 내에 존재하면 같은 클러스터로 분류하고 정해진 반경 내에 존재하지 않으면 다른 클러스터로 분류한다. 그러나 정해진 반경 내에서 클러스터링하는 것은 잘못된 클러스터를 선택하는 단점을 가지게 된다. 그러므로 중간층을 결정하는 .것은 RBF 네트워크의 전반적인 효율성에 큰 영향을 준다. 따라서 본 논문에서는 효율적으로 중간층을 결정하기 위한 방법으로 퍼지 C-Means 클러스터링 알고리즘을 적용한 퍼지 RBF 네트워크를 제안한다. 제안된 퍼지 RBF 네트워크의 학습은 크게 두 단계로 구분된다. 첫 번째 단계는 입력층과 중간층 사이에 퍼지 C-Means 알고리즘이 수행되고, 두 번째 단계는 중간층과 출력층 사이에 지도학습이 수행된다. 제안된 방법의 학습 성능을 평가하기 위하여 실제 주민등록증에서 추출한 숫자패턴에 적용한 결과, 기존의 RBF네트워크 보다 학습 성능이 개선된 것을 확인하였다.

  • PDF

Enhancement of Speech/Music Classification for 3GPP2 SMV Codec Employing Discriminative Weight Training (변별적 가중치 학습을 이용한 3GPP2 SVM의 실시간 음성/음악 분류 성능 향상)

  • Kang, Sang-Ick;Chang, Joon-Hyuk;Lee, Seong-Ro
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.319-324
    • /
    • 2008
  • In this paper, we propose a novel approach to improve the performance of speech/music classification for the selectable mode vocoder (SMV) of 3GPP2 using the discriminative weight training which is based on the minimum classification error (MCE) algorithm. We first present an effective analysis of the features and the classification method adopted in the conventional SMV. And then proposed the speech/music decision rule is expressed as the geometric mean of optimally weighted features which are selected from the SMV. The performance of the proposed algorithm is evaluated under various conditions and yields better results compared with the conventional scheme of the SMV.

Analysis and Implementation of Speech/Music Classification for 3GPP2 SMV Codec Based on Support Vector Machine (SMV코덱의 음성/음악 분류 성능 향상을 위한 Support Vector Machine의 적용)

  • Kim, Sang-Kyun;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.142-147
    • /
    • 2008
  • In this paper, we propose a novel a roach to improve the performance of speech/music classification for the selectable mode vocoder (SMV) of 3GPP2 using the support vector machine (SVM). The SVM makes it possible to build on an optimal hyperplane that is separated without the error where the distance between the closest vectors and the hyperplane is maximal. We first present an effective analysis of the features and the classification method adopted in the conventional SMV. And then feature vectors which are a lied to the SVM are selected from relevant parameters of the SMV for the efficient speech/music classification. The performance of the proposed algorithm is evaluated under various conditions and yields better results compared with the conventional scheme of the SMV.

Compiler Analysis Framework Using SVM-Based Genetic Algorithm : Feature and Model Selection Sensitivity (SVM 기반 유전 알고리즘을 이용한 컴파일러 분석 프레임워크 : 특징 및 모델 선택 민감성)

  • Hwang, Cheol-Hun;Shin, Gun-Yoon;Kim, Dong-Wook;Han, Myung-Mook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.537-544
    • /
    • 2020
  • Advances in detection techniques, such as mutation and obfuscation, are being advanced with the development of malware technology. In the malware detection technology, unknown malware detection technology is important, and a method for Malware Authorship Attribution that detects an unknown malicious code by identifying the author through distributed malware is being studied. In this paper, we try to extract the compiler information affecting the binary-based author identification method and to investigate the sensitivity of feature selection, probability and non-probability models, and optimization to classification efficiency between studies. In the experiment, the feature selection method through information gain and the support vector machine, which is a non-probability model, showed high efficiency. Among the optimization studies, high classification accuracy was obtained through feature selection and model optimization through the proposed framework, and resulted in 48% feature reduction and 53 faster execution speed. Through this study, we can confirm the sensitivity of feature selection, model, and optimization methods to classification efficiency.

Emotion-based Video Scene Retrieval using Interactive Genetic Algorithm (대화형 유전자 알고리즘을 이용한 감성기반 비디오 장면 검색)

  • Yoo Hun-Woo;Cho Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.6
    • /
    • pp.514-528
    • /
    • 2004
  • An emotion-based video scene retrieval algorithm is proposed in this paper. First, abrupt/gradual shot boundaries are detected in the video clip representing a specific story Then, five video features such as 'average color histogram' 'average brightness', 'average edge histogram', 'average shot duration', and 'gradual change rate' are extracted from each of the videos and mapping between these features and the emotional space that user has in mind is achieved by an interactive genetic algorithm. Once the proposed algorithm has selected videos that contain the corresponding emotion from initial population of videos, feature vectors from the selected videos are regarded as chromosomes and a genetic crossover is applied over them. Next, new chromosomes after crossover and feature vectors in the database videos are compared based on the similarity function to obtain the most similar videos as solutions of the next generation. By iterating above procedures, new population of videos that user has in mind are retrieved. In order to show the validity of the proposed method, six example categories such as 'action', 'excitement', 'suspense', 'quietness', 'relaxation', 'happiness' are used as emotions for experiments. Over 300 commercial videos, retrieval results show 70% effectiveness in average.

Statistical Image Feature Based Block Motion Estimation for Video Sequences (비디오 영상에서 통계적 영상특징에 의한 블록 모션 측정)

  • Bae, Young-Lae;Cho, Dong-Uk;Chun, Byung-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.1
    • /
    • pp.9-13
    • /
    • 2003
  • We propose a block motion estimation algorithm based on a statistical image feature for video sequences. The statistical feature of the reference block is obtained, then applied to select the candidate starting points (SPs) in the regular starting points pattern (SPP) by comparing the statistical feature of reference block with that of blocks which are spread ower regular SPP. The final SPs are obtained by their Mean Absolute Difference(MAD) value among the candidate SPs. Finally, one of conventional fast search algorithms, such as BRGDS, DS, and three-step search (TSS), has been applied to generate the motion vector of reference block using the final SPs as its starting points. The experimental results showed that the starting points from fine SPs were as dose as to the global minimum as we expected.

  • PDF

The Design of Feature Selection Classifier based on Physiological Signal for Emotion Detection (감성판별을 위한 생체신호기반 특징선택 분류기 설계)

  • Lee, JeeEun;Yoo, Sun K.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.206-216
    • /
    • 2013
  • The emotion plays a critical role in human's daily life including learning, action, decision and communication. In this paper, emotion discrimination classifier is designed to reduce system complexity through reduced selection of dominant features from biosignals. The photoplethysmography(PPG), skin temperature, skin conductance, fontal and parietal electroencephalography(EEG) signals were measured during 4 types of movie watching associated with the induction of neutral, sad, fear joy emotions. The genetic algorithm with support vector machine(SVM) based fitness function was designed to determine dominant features among 24 parameters extracted from measured biosignals. It shows maximum classification accuracy of 96.4%, which is 17% higher than that of SVM alone. The minimum error features selected are the mean and NN50 of heart rate variability from PPG signal, the mean of PPG induced pulse transit time, the mean of skin resistance, and ${\delta}$ and ${\beta}$ frequency band powers of parietal EEG. The combination of parietal EEG, PPG, and skin resistance is recommendable in high accuracy instrumentation, while the combinational use of PPG and skin conductance(79% accuracy) is affordable in simplified instrumentation.

Context Aware Feature Selection Model for Salient Feature Detection from Mobile Video Devices (모바일 비디오기기 위에서의 중요한 객체탐색을 위한 문맥인식 특성벡터 선택 모델)

  • Lee, Jaeho;Shin, Hyunkyung
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.117-124
    • /
    • 2014
  • Cluttered background is a major obstacle in developing salient object detection and tracking system for mobile device captured natural scene video frames. In this paper we propose a context aware feature vector selection model to provide an efficient noise filtering by machine learning based classifiers. Since the context awareness for feature selection is achieved by searching nearest neighborhoods, known as NP hard problem, we apply a fast approximation method with complexity analysis in details. Separability enhancement in feature vector space by adding the context aware feature subsets is studied rigorously using principal component analysis (PCA). Overall performance enhancement is quantified by the statistical measures in terms of the various machine learning models including MLP, SVM, Naïve Bayesian, CART. Summary of computational costs and performance enhancement is also presented.

EEG Signal Classification Algorithm based on DWT and SVM for Driving Robot Control (주행로봇제어를 위한 DWT와 SVM기반의 EEG신호 분류 알고리즘)

  • Lee, Kibae;Lee, Chong Hyun;Bae, Jinho;Lee, Jaeil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.117-125
    • /
    • 2015
  • In this paper, we propose a classification algorithm based on the obtained EEG(Electroencephalogram) signal for the control of 'left' and 'right' turnings of which a driving system composed of EEG sensor, Labview, DAQ, Matlab and driving robot. The proposed algorithm uses features extracted from frequency band information obtained by DWT (Discrete Wavelet Transform) and selects features of high discrimination by using Fisher score. We, also propose the number of feature vectors for the best classification performance by using SVM(Support Vector Machine) classifier and propose a decision pending algorithm based on MLD (Maximum Likelihood Decision) to prevent malfunction due to misclassification. The selected four feature vectors for the proposed algorithm are the mean of absolute value of voltage and the standard deviation of d5(2-4Hz) and d2(16-32Hz) frequency bands of P8 channel according to the international standard electrode placement method. By using the SVM classifier, we obtained 98.75% accuracy and 1.25% error rate. Also, when we specify error probability of 70% for decision pending, we obtained 95.63% accuracy and 0% error rate by using the proposed decision pending algorithm.

Passports Recognition using ART2 Algorithm and Face Verification (ART2 알고리즘과 얼굴 인증을 이용한 여권 인식)

  • Jang, Do-Won;Kim, Kwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.190-197
    • /
    • 2005
  • 본 논문에서는 출입국자 관리의 효율성과 체계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하고 위조 여권을 판별할 수 있는 여권 인식 및 얼굴 인증 방법을 제안한다. 여권 이미지는 기울어진 상태로 스캔되어 획득되어질 수도 있으므로 기울기 보정은 문자 분할 및 인식, 얼굴 인증에 있어 매우 중요하다. 따라서 본 논문에서는 여권 영상을 스미어링한 후, 추출된 문자열 중에서 가장 긴 문자열을 선택하고 이 문자열의 좌측과 우측 부분의 두께 중심을 연결하는 직선과 수평선과의 기울기를 이용하여 여권 여상에 대한 각도 보정을 수행한다. 여권 코드 추출은 소벨 연산자와 수평 스미어링, 8방향 윤곽선 추적 알고리즘을 적용하여 여권 코드의 문자열 영역을 추출하고, 추출된 여권 코드 문자열 영역에 대해 반복 이지화 방법을 적용하여 코드의 문자열 영역을 이진화한다. 이진화된 문자열 영역에 대해 CDM 마스크를 적용하여 문자열의 코드들을 복원하고 8방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드는 ART2 알고리즘을 적용하여 인식한다. 얼굴 인증을 위해 템플릿 매칭 알고리즘을 이용하여 얼굴 템플릿 데이터베이스를 구축하고 여권에서 추출된 얼굴 영역과의 유사도 측정을 통하여 여권 얼굴 영역의 위조 여부를 판별한다. 얼굴 인증을 위해서 Hue, YIQ-I, YCbCr-Cb 특징들의 유사도를 종합적으로 분석하여 얼굴 인증에 적용한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능을 평가를 위하여 원본 여권에 얼굴 부분을 위조한 여권과 노이즈, 대비 증가 및 감소, 밝기 증가 및 감소 및 여권 영상을 흐리게 하여 실험한 결과, 제안된 방법이 여권 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.권 영상에서 획득되어진 얼굴 영상의 특징벡터와 데이터베이스에 있는 얼굴 영상의 특징벡터와의 거리 값을 계산하여 사진 위조 여부를 판별한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능을 평가를 위하여 원본 여권에서 얼굴 부분을 위조한 여권과 기울어진 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권의 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.진행하고 있다.태도와 유아의 창의성간에는 상관이 없는 것으로 나타났고, 일반 유아의 아버지 양육태도와 유아의 창의성간의 상관에서는 아버지 양육태도의 성취-비성취 요인에서와 창의성제목의 추상성요인에서 상관이 있는 것으로 나타났다. 따라서 창의성이 높은 아동의 아버지의 양육태도는 일반 유아의 아버지와 보다 더 애정적이며 자율성이 높지만 창의성이 높은 아동의 집단내에서 창의성에 특별한 영향을 더 미치는 아버지의 양육방식은 발견되지 않았다. 반면 일반 유아의 경우 아버지의 성취지향성이 낮을 때 자녀의 창의성을 향상시킬 수 있는 것으로 나타났다. 이상에서 자녀의 창의성을 향상시키는 중요한 양육차원은 애정성이나 비성취지향성으로 나타나고 있어 정서적인 측면의 지원인 것으로 밝혀졌다.징에서 나타나는 AD-SR맥락의 반성적 탐구가 자주 나타났다. 반성적 탐구 척도 두 그룹을 비교 했을 때 CON 상호작용의 특징이 낮게 나타나는 N그룹이 양적으로 그리고 내용적으로 더 의미 있는 반성적 탐구를 했다용을 지원하는 홈페이지를 만들어 자료 제공 사이트에 대한 메타 자료를 데이터베이스화했으며 이를 통해 학생들이 원하는 실시간 자료를 검색하여 찾을 수 있고 홈페이지를 방분했을 때 이해하기 어려운 그래프나 각 홈페이지가 제공하는 자료들에 대한 처리 방법을 도움말로 제공받을 수 있게 했다. 실

  • PDF