• Title/Summary/Keyword: 특징벡터 선택 알고리즘

Search Result 69, Processing Time 0.027 seconds

A Method to Find Feature Set for Detecting Various Denial Service Attacks in Power Grid (전력망에서의 다양한 서비스 거부 공격 탐지 위한 특징 선택 방법)

  • Lee, DongHwi;Kim, Young-Dae;Park, Woo-Bin;Kim, Joon-Seok;Kang, Seung-Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.311-316
    • /
    • 2016
  • Network intrusion detection system based on machine learning method such as artificial neural network is quite dependent on the selected features in terms of accuracy and efficiency. Nevertheless, choosing the optimal combination of features, which guarantees accuracy and efficienty, from generally used many features to detect network intrusion requires extensive computing resources. In this paper, we deal with a optimal feature selection problem to determine 6 denial service attacks and normal usage provided by NSL-KDD data. We propose a optimal feature selection algorithm. Proposed algorithm is based on the multi-start local search algorithm, one of representative meta-heuristic algorithm for solving optimization problem. In order to evaluate the performance of our proposed algorithm, comparison with a case of all 41 features used against NSL-KDD data is conducted. In addtion, comparisons between 3 well-known machine learning methods (multi-layer perceptron., Bayes classifier, and Support vector machine) are performed to find a machine learning method which shows the best performance combined with the proposed feature selection method.

Feature Selection for Creative People Based on Big 5 Personality traits and Machine Learning Algorithms (Big 5 성격 요소와 머신 러닝 알고리즘을 통한 창의적인 사람들의 특징 연구)

  • Kim, Yong-Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.97-102
    • /
    • 2019
  • There are many difficulties to define because there is no systematic classification and analysis method using accurate criteria or numerical values for creative people. In order to solve this problem, this study attempts to analyze how to distinguish creative people and what kind of personality they have when distinguishing creative people. In this study, I first survey the Big 5 personality trait, classify and analyze the data set using the data mining tool WEKA, and then analyze the data set related to the creativity The goal is to analyze the features using various machine learning techniques. I use seven feature selection algorithms, select feature groups classified by feature selection algorithms, apply them to machine learning algorithms to find out the accuracy, and derive the results.

Analysis and Implementation of Speech/Music Classification for 3GPP2 SMV Based on GMM (3GPP2 SMV의 실시간 음성/음악 분류 성능 향상을 위한 Gaussian Mixture Model의 적용)

  • Song, Ji-Hyun;Lee, Kye-Hwan;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.8
    • /
    • pp.390-396
    • /
    • 2007
  • In this letter, we propose a novel approach to improve the performance of speech/music classification for the selectable mode vocoder(SMV) of 3GPP2 using the Gaussian mixture model(GMM) which is based on the expectation-maximization(EM) algorithm. We first present an effective analysis of the features and the classification method adopted in the conventional SMV. And then feature vectors which are applied to the GMM are selected from relevant Parameters of the SMV for the efficient speech/music classification. The performance of the proposed algorithm is evaluated under various conditions and yields better results compared with the conventional scheme of the SMV.

Feature Extraction of Images By Using Independent Component Analysis of Modified Fixed-Point Algorithm (수정된 고정점 알고리즘의 독립성분분석을 이용한 영상의 특징추출)

  • 조용현;민성재
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.133-136
    • /
    • 2002
  • 본 연구에서는 뉴우턴법과 모멘트를 이용한 수정된 고정점 알고리즘의 독립성분분석기법을 이용한 영상의 특징추출을 제안하였다. 여기서 뉴우턴법은 엔트로피 최적화로부터 유도된 기법으로 그 계산을 간략화하여 역혼합행렬의 빠른 경신을 위함이고, 모멘트는 접선을 구하는 과정에서 함수의 기울기변화 계산에서 발생하는 발진을 줄여 좀 더 빠른 학습을 위함이다. 제안된 기법을 13개 자연영상들로부터 선택된 12×12 픽셀(pixel)의 10,000개 패치를 대상으로 시뮬레이션 한 결과, 추출된 16×16픽셀의 160개 독립성분 기저벡터 각각은 자연영상들에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인할 수 있었다. 또한 모멘트의 이용으로 개선된 특징추출을 얻을 수 있었다.

  • PDF

The Design of Feature Selecting Algorithm for Sleep Stage Analysis (수면단계 분석을 위한 특징 선택 알고리즘 설계)

  • Lee, JeeEun;Yoo, Sun K.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.207-216
    • /
    • 2013
  • The aim of this study is to design a classifier for sleep stage analysis and select important feature set which shows sleep stage well based on physiological signals during sleep. Sleep has a significant effect on the quality of human life. When people undergo lack of sleep or sleep-related disease, they are likely to reduced concentration and cognitive impairment affects, etc. Therefore, there are a lot of research to analyze sleep stage. In this study, after acquisition physiological signals during sleep, we do pre-processing such as filtering for extracting features. The features are used input for the new combination algorithm using genetic algorithm(GA) and neural networks(NN). The algorithm selects features which have high weights to classify sleep stage. As the result of this study, accuracy of the algorithm is up to 90.26% with electroencephalography(EEG) signal and electrocardiography(ECG) signal, and selecting features are alpha and delta frequency band power of EEG signal and standard deviation of all normal RR intervals(SDNN) of ECG signal. We checked the selected features are well shown that they have important information to classify sleep stage as doing repeating the algorithm. This research could use for not only diagnose disease related to sleep but also make a guideline of sleep stage analysis.

Automatic Target Recognition by selecting similarity-transform-invariant local and global features (유사변환에 불변인 국부적 특징과 광역적 특징 선택에 의한 자동 표적인식)

  • Sun, Sun-Gu;Park, Hyun-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.370-380
    • /
    • 2002
  • This paper proposes an ATR (Automatic Target Recognition) algorithm for identifying non-occluded and occluded military vehicles in natural FLIR (Forward Looking InfraRed) images. After segmenting a target, a radial function is defined from the target boundary to extract global shape features. Also, to extract local shape features of upper region of a target, a distance function is defined from boundary points and a line between two extreme points. From two functions and target contour, four global and four local shape features are proposed. They are much more invariant to translation, rotation and scale transform than traditional feature sets. In the experiments, we show that the proposed feature set is superior to the traditional feature sets with respect to the similarity-transform invariance and recognition performance.

An Efficient Selection Method for Document Classification Based On Singular Value Decompostion (문서분류에서 SVD(Singular Value Decompotion)기법에 기초한 효율적인 특징 선택방법 연구)

  • Li, Cheng-hua;Byun, Dong Ryul;Park, Soon Cheol
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.321-322
    • /
    • 2009
  • 본 논문에서는 문서분류를 위하여 SVD(Singular Value Decomposition)을 이용한 효율적인 특징 선택 방법을 제안한다. 분류기 알고리즘은 문서를 효과적으로 분류할 수 있지만 분류기에 입력되는 특징공간이 너무 크다는 단점이 있다. SVD를 이용하면 입력 데이터의 차원을 줄여줄 수 있으며 문서와 문서 사이의 관계성을 내포하는 벡터공간을 만들 수 있다. 따라서 SVD를 이용하면 문서분류의 시간과 효율을 동시에 증가시킬 수 있다. 본 논문에서는 실험을 통하여 SVD을 이용한 문서분류 시스템이 입력데이터에 대한 차원을 감소시키면서 훌륭한 분류 결과를 얻을 수 있음을 보여준다.

Feature Extraction of Images By Using Independent Component Analysis of Fixed-Point Algorithm Based on Secant Method (할선법에 기초한 고정점 학습알고리즘의 독립성분분석을 이용한 영상의 특징추출)

  • 조용현;민성재;김아람;오정은
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.137-140
    • /
    • 2002
  • 본 연구에서는 할선법에 기초한 고정점 알고리즘의 독립성분분석기법을 이용한 영상의 특징추출을 제안하였다. 여기서 할선법은 엔트로피 최적화를 위한 목적함수의 근을 구하기 위해 단순히 함수 값만을 이용하여 계산을 간략하게 함으로써 역혼합행렬의 경신속도를 빠르게 하기 위함이다. 제안된 기법을 256×256 픽셀(pixel)의 10개 지문영상들로부터 선택된 16×16 픽셀의 20,000개 패치를 대상으로 시뮬레이션 한 결과. 추출된 16×16 픽셀의 160개 독립성분 기저벡터 각각은 지문영상들에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인할 수 있었다.

  • PDF

Feature Extraction of Single Images by Using Independent Component Analysis Based on Neuarl Networks (신경망 기반 독립성분분석에 의한 단일영상들의 특징추출)

  • 조용현;민성재;김아람;오정은
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.370-373
    • /
    • 2002
  • 본 논문에서는 단일영상들에 포함된 특징들을 효과적으로 추출하기 위하여 신경망 기반 독립성분분석기법의 이용을 제안하였다. 여기서 독립성분의 효과적인 분석을 위해 고정점 학습알고리즘의 신경망 기반 기법을 이용하였다. 이는 수치적 기법에 비해 신경망이 가지는 ?ㄱ습 등의 우수한 속성과 뉴우턴법의 고정점 알고리즘이 가지는 빠르고 간단한 계산속성을 동시에 살리기 위함이다. 제안된 기법을 512x412 픽셀의 L둠 영상과 480x225 픽셀의 지폐영상 각각에서 선택된 1,000개의 영상패치들을 대상으로 시뮬레이션 한 결과, 추출된 16x16 펙셀의 160개 독립성분 기저벡터는 지문영상과 지폐영상 각각에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인할 수 있었다.

An Efficient Feature Extraction of Finger Images by Using Independent Component Analysis Based on Neuarl Networks (신경망 기반 독립성분분석을 이용한 지문영상의 효과적인 특징추출)

  • 조용현;민성재
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.291-294
    • /
    • 2002
  • 본 논문에서는 신경망 기반 독립성분분석기법을 이용하여 지문영상에 포함된 특징들을 효과적으로 추출하는 방법을 제안하였다. 여기서 독립성분의 효과적인 분석을 위해 고정점 학습알고리즘의 신경망 기반 기법을 이용하였다. 이는 수치적 기법에 비해 신경망이 가지는 학습 등의 우수한 속성과 뉴우턴법의 고정점 알고리즘이 가지는 빠르고 간단한 계산속성을 동시에 살리기 위함이다. 제안된 기법을 256$\times$256 픽셀의 8개 지문영상에서 선택된 10,000개의 영상패치를 대상으로 시뮬레이션 한 결과, 추출된 16$\times$16 펙셀의 160개 독립성분 기저벡터는 지문영상들에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인할 수 있었다.