우리는 관절체 캐릭터에 대해 시간에 따른 인식의 정도를 측정하는 모션 특징점 맵을 제안한다. 모션 특징점 맵은 이미지 특징점 맵에서 사용된 가우시안 거리 방법을 응용하여 계산할 수 있다. 관절 계층 구조에서의 모션과 시각적 인지간의 관계를 고려하여, 우리는 관절 동선 모션 특징점 맵과 관절 구동 모션 특징점 맵의 두 가지 모션 특징점 맵을 정의하였다. 정의한 두 가지 모션 특징점 맵을 사용하여 한 프레임에서의 모션 특징점 맵 또한 계산할 수 있다. 계산된 모션 특징점 맵은 모션의 시놉시스 생성, 정운동학 연산량의 축소, 자동적 카메라 동선 생성 등 여러 가지 응용 분야에 적용할 수 있다. 실험을 통하여 우리는 모션에 대한 인식 기반적인 접근을 통해 모션의 질적인 향상은 물론 계산적인 퍼포먼스의 향상에도 많은 기여를 할 수 있음을 알 수 있었다.
MPEG-VCM(Video Coding for Machine)은 입력된 이미지/비디오의 특징(feature)를 압축하는 Track 1 과 입력 이미지/비디오를 직접 압축하는 Track 2 로 나뉘어 표준화가 진행 중이다. 본 논문은 Track 1 의 비전임무 네트워크로 사용하는 Detectron2 의 FPN(Feature Pyramid Network)에서 추출한 멀티-스케일 특징을 효율적으로 압축하는 MSFC 기반의 압축 모델의 개선 기법을 제시한다. 제안기법은 해상도를 줄여서 단일-스케일 압축맵을 압축하는 기존의 압축 모델에서 저해상도 특징맵을 고해상도 특징맵에 바텀-업(Bottom-Up) 구조로 합성하여 단일-스케일 특징맵을 구성하는 바텀-업 MSFF 를 가지는 압축 모델을 제시한다. 제안방법은 기존의 모델 보다 BPP-mAP 성능에서 1 ~ 2.7%의 개선된 BD-rate 성능을 보이며 VCM 의 이미지 앵커(image anchor) 대비 최대 -85.94%의 BD-rate 성능향상을 보인다.
자연이미지로부터 텍스트 영역 추출은 자동차 번호판 인식 등과 같은 많은 응용프로그램에서 유용하다. 따라서 본 논문은 문자-에지 맵의 패턴 히스토그램을 이용한 텍스트 영역을 추출하는 방법을 제안한다. 16종류의 에지맵을 생성하고, 이것을 조합하여 문자 특징을 갖는 8종류 문자-에지 맵 특징을 추출한다. 문자-에지 맵의 특징을 이용하여 텍스트 후보 영역을 추출하고, 텍스트 후보 영역에 대한 검증은 문자-에지 맵의 패턴 히스토그램 및 텍스트 영역의 구조적 특징을 이용하였다. 실험결과 제안한 방법은 복잡한 배경, 다양한 글꼴, 다양한 텍스트 컬러로 구성된 자연이미지로부터 텍스트 영역을 효과적으로 추출하였다.
본 논문에서는 이종 모델의 특징맵 간 상관관계인 외부적 상관관계와 동종 모델 내부 특징맵 간 상관관계인 내부적 상관관계를 활용하여 교사 모델로부터 학생 모델로 지식을 전이하는 Internal/External Knowledge Distillation (IEKD)를 제안한다. 두 상관관계를 모두 활용하기 위하여 특징맵을 시퀀스 형태로 변환하고, 트랜스포머를 통해 내부적/외부적 상관관계를 고려하여 지식 증류에 적합한 새로운 특징맵을 추출한다. 추출된 특징맵을 증류함으로써 내부적 상관관계와 외부적 상관관계를 함께 학습할 수 있다. 또한 추출된 특징맵을 활용하여 feature matching을 수행함으로써 학생 모델의 정확도 향상을 도모한다. 제안한 지식 증류 방법의 효과를 증명하기 위해, CIFAR-100 데이터 셋에서 "ResNet-32×4/VGG-8" 교사/학생 모델 조합으로 최신 지식 증류 방법보다 향상된 76.23% Top-1 이미지 분류 정확도를 달성하였다.
최근 영상 혹은 비디오를 이용한 신경망 기반 기술들이 활발히 응용되고 있으며, 신경망이 처리하는 임무도 다양하고 복잡해지고 있다. 이러한 신경망 임무의 다양성과 복잡성은 더욱 많은 비디오 데이터를 요구하기 때문에 비디오 데이터를 효과적으로 전송할 방법이 필요하다. 이에 따라 국제 표준화 단체인 MPEG 에서는 신경망 기계 소비에 적합한 비디오 부호화 표준 개발을 위해서 Video Coding for Machines 표준화를 진행하고 있다. 본 논문에서는 신경망의 특징 맵 부호화 효율을 개선하기 위해 특징 맵 채널 간의 유사도가 높도록 특징맵 채널을 재배열하여 압축하는 방법을 제안한다. 제안 방법으로 VCM 의 OpenImages 데이터셋의 5000 개 검증 영상 중 임의 선택된 360 개 영상에 대해 부호화 효율을 평가한 결과, 객체 검출 임무의 정확도가 유지되면서 모든 양자화 값에 대해 화소당 비트수가 감소했으며, BD-rate 측면에서 2.07%의 부호화 이득을 얻었다.
특징 기반 유사성은 멀티미디어 데이터베이스 시스템에서 중요한 연구 쟁점이 되고 있다. 멀티미디어 데이터의 특징이 멀티미디어 객체들을 구별하는데 유용하다지만 특징 벡터의 차원의 수가 증가함에 따라 종래의 다차원 데이터 구조의 성능은 떨어지는 경향이 있다. $R^{*}-Tree$는 R-Tree의 가장 성공적인 병형으로 본 논문에서 고차원 특징 벡터를 위한 새로운 인덱싱 방법으로서 자기 조직화 맵 기반 $R^{*}-Tree$를 제안한다. 자기 조직화 맵 기잔 $R^{*}-Tree$는 고차원 데이터를 좀더 스칼라화해서 탐색할 수 있도록 SOM과 $R^{*}-Tree$를 결합하여 구축한 인덱싱 기법이다. 자기 조직 맵은 고차원 특징 벡터들로부터 2차원 공간으로의 맵핑을 제공한다. 그러나 맵을 위상 특징 맵이라 하고 인접 노느에서 서로 유사한 특징 벡터들을 모아서 입력데이터의 특징 공간들 속에 유사성을 보존하는데 위상 특징 맵의 각 노드는 코드북 벡터를 가지고 있다. 실험적으로 4만개의 이미지로부터 추출된 색깔 특징 벡터들을 이용하여 자기 조직화 맵 기반 $R^{*}-Tree$의 검색시간 비용과 자기 조직화 맵과 $R^{*}-Tree$의 검색 시간 비용을 비교한다. 그 결과 $R^{*}-Tree$를 구축하는데 필요한 노드 수와 검색 시간 비용이 감소됨으로써 자기 조직화 맵 기반 $R^{*}-Tree$는 자기 조직화 맵과 $R^{*}-Tree$보다 훨씬 우수한 성능을 나타냄이 입증되었다.
본 연구는 장면 이미지로부터 텍스트에 존재하는 문자-에지 특징을 이용하여 텍스트를 추출하는 방법을 제안한다. 캐니(Canny)에지 연산자를 이용하여 장면 이미지로부터 에지를 추출하고, 추출된 에지로부터 16종류의 에지-맵 생성한다. 생성된 에지 맵을 재구성하여 문자 특징을 갖는 8종류의 문자-에지 맵을 만단다. 텍스트는 배경과 잘 분리되는 특징이 있으므로 텍스트에 존재하는 '문자-에지 맵'의 특징을 이용하여 텍스트를 추출한다. 텍스트 영역에 대한 검증은 문자-에지 맵의 분포와 텍스트에 존재하는 글자간의 공백 특징으로 한다. 제안한 방법은 다양한 종류의 장면 이미지를 실험대상으로 하였고, 텍스트는 적어도 2글자 이상으로 구성된다는 제한조건과 너무 크거나 작은 텍스트는 텍스트 추출에서 제외하였다. 실험결과 텍스트 영역 추출률은 약 83%를 얻었다.
컴퓨터 게임에서 사용하는 복잡한 3차원 캐릭터 모델을 단순한 모델로 만드는 것은 매우 중요하다. 제안 방법은 3차원 게임 캐릭터에서 특징선을 추출하여 모델을 단순화 시키는 새로운 방법에 대해 제안한다. 주어진 3차원 캐릭터 모델은 텍스처 정보를 포함하고 있다. 3차원 캐릭터 모델에서의 텍스처 및 곡률의 변동을 이용해서 2차원 맵인 모델특징맵(Model Feature Map)을 생성한다. 모델특징맵은 곡률 맵(curvature map)과 텍스처 맵(texture map)으로부터 생성되며, 본 맵을 통해 에지 추출 기법을 이용하여 특징선을 추출한다. 모델특징맵은 표준 영상처리툴을 이용해 쉽게 편집할 수 있다. 실험을 통하여 본 알고리즘의 효율성을 보여주며, 실험은 얼굴 캐릭터에 한정하지 않는다.
특징정보를 기반으로 한 유사화상 검색은 화상 데이터베이스에 있어서 중요한 과제의 하나이다. 화상 데이터의 특징정보를 각 화상을 식별하는데 유용한 정보이다. 본 논문에서는 자기조직화 맵기반의 고속 k-NN 탐색 알고리즘을 제안한다. 자기조직화 맵은 학습을 통하여 고차원 특징벡터를 2차원 공간에 맵핑함으로서 위상 특징맵을 생성한다. 위상 특징맵은 입력 데이터의 특징공간의 상호간의 유사성을 가지고 있으며, 각 노드는 노드벡터와 각 노드벡터에 가장 가까운 유사화상이 분류된다. 이러한 자기조직화 맴에 의한 유사화상 분류결과에 대한 k-NN 탐색을 구현하기 위한여, (1) 위상특징 맵에 대한 접근방법, (2) 고속탐색을 위한 pruning strategy의 적용을 실현하였다. 본 연구에서는 실험을 통하여 실제화상으로부터 추출한 색상 특징을 사용하여 제안한 알고리즘의 성능을 평가함으로써 유사화상 검색에 유효한 결과를 얻을 수 있었다.
MPEG-VCM(Video Coding for Machines)에서는 머신비전(machine vision) 네트워크의 백본(backbone)에서 추출된 이미지/비디오 특징 압축을 위한 표준화를 진행하고 있다. 현재 VCM 표준기술 탐색 과정에서 가장 좋은 압축 성능을 보이는 MSFC(Multi-Scale Feature compression) 기반 압축 네트워크 모델은 추출된 멀티-스케일 특징을 단일-스케일 특징으로 변환하여 특징맵으로 구성하고 이를 VVC 로 압축한다. 본 논문에서는 MSFC 기반 압축 모델에서 Min-Max 값 시그널링을 제외한 최소-최대(Min-Max) 정규화를 포함한 개선된 특징맵 생성 기법을 제시한다. 즉, 제안기법은 VCM 디코더에서의 특징맵 복원을 위한 Min-Max 값을 학습 기반으로 생성함으로써 Min-Max 시그널링의 비트 오버헤드 절감뿐만 아니라 별도의 시그널링 기제를 생략한 보다 단순한 전송 비트스트림 구성을 가능하게 한다. 실험결과 제안기법은 이미지 앵커(Anchor) 대비 BPP-mAP 성능에서 83.24% BD-rate 이득을 보이며, 이는 기존 MSFC 보다 1.74%정도 다소 떨어지지만 별도의 Min-Max 시그널링 없이도 기존의 성능을 유지할 수 있음을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.