• 제목/요약/키워드: 특징맵

검색결과 269건 처리시간 0.023초

모션 특징점 맵과 응용 (Motion Saliency Map and its Application)

  • 권지용;윤종철;이인권
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (A)
    • /
    • pp.97-99
    • /
    • 2006
  • 우리는 관절체 캐릭터에 대해 시간에 따른 인식의 정도를 측정하는 모션 특징점 맵을 제안한다. 모션 특징점 맵은 이미지 특징점 맵에서 사용된 가우시안 거리 방법을 응용하여 계산할 수 있다. 관절 계층 구조에서의 모션과 시각적 인지간의 관계를 고려하여, 우리는 관절 동선 모션 특징점 맵과 관절 구동 모션 특징점 맵의 두 가지 모션 특징점 맵을 정의하였다. 정의한 두 가지 모션 특징점 맵을 사용하여 한 프레임에서의 모션 특징점 맵 또한 계산할 수 있다. 계산된 모션 특징점 맵은 모션의 시놉시스 생성, 정운동학 연산량의 축소, 자동적 카메라 동선 생성 등 여러 가지 응용 분야에 적용할 수 있다. 실험을 통하여 우리는 모션에 대한 인식 기반적인 접근을 통해 모션의 질적인 향상은 물론 계산적인 퍼포먼스의 향상에도 많은 기여를 할 수 있음을 알 수 있었다.

  • PDF

VCM 의 바텀-업 MSFF 를 이용한 MSFC 기반 멀티-스케일 특징 압축 네트워크 개선 (Enhancement of MSFC-Based Multi-Scale Features Compression Network with Bottom-UP MSFF in VCM)

  • 김동하;한규웅;차준석;김재곤
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.116-118
    • /
    • 2022
  • MPEG-VCM(Video Coding for Machine)은 입력된 이미지/비디오의 특징(feature)를 압축하는 Track 1 과 입력 이미지/비디오를 직접 압축하는 Track 2 로 나뉘어 표준화가 진행 중이다. 본 논문은 Track 1 의 비전임무 네트워크로 사용하는 Detectron2 의 FPN(Feature Pyramid Network)에서 추출한 멀티-스케일 특징을 효율적으로 압축하는 MSFC 기반의 압축 모델의 개선 기법을 제시한다. 제안기법은 해상도를 줄여서 단일-스케일 압축맵을 압축하는 기존의 압축 모델에서 저해상도 특징맵을 고해상도 특징맵에 바텀-업(Bottom-Up) 구조로 합성하여 단일-스케일 특징맵을 구성하는 바텀-업 MSFF 를 가지는 압축 모델을 제시한다. 제안방법은 기존의 모델 보다 BPP-mAP 성능에서 1 ~ 2.7%의 개선된 BD-rate 성능을 보이며 VCM 의 이미지 앵커(image anchor) 대비 최대 -85.94%의 BD-rate 성능향상을 보인다.

  • PDF

문자-에지 맵의 패턴 히스토그램을 이용한 자연이미지에세 텍스트 영역 추출 (Text Region Extraction Using Pattern Histogram of Character-Edge Map in Natural Images)

  • 박종천;황동국;이우람;전병민
    • 한국산학기술학회논문지
    • /
    • 제7권6호
    • /
    • pp.1167-1174
    • /
    • 2006
  • 자연이미지로부터 텍스트 영역 추출은 자동차 번호판 인식 등과 같은 많은 응용프로그램에서 유용하다. 따라서 본 논문은 문자-에지 맵의 패턴 히스토그램을 이용한 텍스트 영역을 추출하는 방법을 제안한다. 16종류의 에지맵을 생성하고, 이것을 조합하여 문자 특징을 갖는 8종류 문자-에지 맵 특징을 추출한다. 문자-에지 맵의 특징을 이용하여 텍스트 후보 영역을 추출하고, 텍스트 후보 영역에 대한 검증은 문자-에지 맵의 패턴 히스토그램 및 텍스트 영역의 구조적 특징을 이용하였다. 실험결과 제안한 방법은 복잡한 배경, 다양한 글꼴, 다양한 텍스트 컬러로 구성된 자연이미지로부터 텍스트 영역을 효과적으로 추출하였다.

  • PDF

Knowledge Distillation based-on Internal/External Correlation Learning

  • Hun-Beom Bak;Seung-Hwan Bae
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권4호
    • /
    • pp.31-39
    • /
    • 2023
  • 본 논문에서는 이종 모델의 특징맵 간 상관관계인 외부적 상관관계와 동종 모델 내부 특징맵 간 상관관계인 내부적 상관관계를 활용하여 교사 모델로부터 학생 모델로 지식을 전이하는 Internal/External Knowledge Distillation (IEKD)를 제안한다. 두 상관관계를 모두 활용하기 위하여 특징맵을 시퀀스 형태로 변환하고, 트랜스포머를 통해 내부적/외부적 상관관계를 고려하여 지식 증류에 적합한 새로운 특징맵을 추출한다. 추출된 특징맵을 증류함으로써 내부적 상관관계와 외부적 상관관계를 함께 학습할 수 있다. 또한 추출된 특징맵을 활용하여 feature matching을 수행함으로써 학생 모델의 정확도 향상을 도모한다. 제안한 지식 증류 방법의 효과를 증명하기 위해, CIFAR-100 데이터 셋에서 "ResNet-32×4/VGG-8" 교사/학생 모델 조합으로 최신 지식 증류 방법보다 향상된 76.23% Top-1 이미지 분류 정확도를 달성하였다.

신경망 특징맵 부호화를 위한 특징맵 재배열 및 압축 방법 (Feature map channel reordering and compression for Neural Network feature map coding)

  • 한희지;곽상운;윤정일;정원식;서정일;최해철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.39-42
    • /
    • 2021
  • 최근 영상 혹은 비디오를 이용한 신경망 기반 기술들이 활발히 응용되고 있으며, 신경망이 처리하는 임무도 다양하고 복잡해지고 있다. 이러한 신경망 임무의 다양성과 복잡성은 더욱 많은 비디오 데이터를 요구하기 때문에 비디오 데이터를 효과적으로 전송할 방법이 필요하다. 이에 따라 국제 표준화 단체인 MPEG 에서는 신경망 기계 소비에 적합한 비디오 부호화 표준 개발을 위해서 Video Coding for Machines 표준화를 진행하고 있다. 본 논문에서는 신경망의 특징 맵 부호화 효율을 개선하기 위해 특징 맵 채널 간의 유사도가 높도록 특징맵 채널을 재배열하여 압축하는 방법을 제안한다. 제안 방법으로 VCM 의 OpenImages 데이터셋의 5000 개 검증 영상 중 임의 선택된 360 개 영상에 대해 부호화 효율을 평가한 결과, 객체 검출 임무의 정확도가 유지되면서 모든 양자화 값에 대해 화소당 비트수가 감소했으며, BD-rate 측면에서 2.07%의 부호화 이득을 얻었다.

  • PDF

자기 조직화 맵 기반 유사 검색 시스템 (SOM-Based $R^{*}-Tree$ for Similarity Retrieval)

  • 오창윤;임동주;오군석;배상현
    • 정보처리학회논문지D
    • /
    • 제8D권5호
    • /
    • pp.507-512
    • /
    • 2001
  • 특징 기반 유사성은 멀티미디어 데이터베이스 시스템에서 중요한 연구 쟁점이 되고 있다. 멀티미디어 데이터의 특징이 멀티미디어 객체들을 구별하는데 유용하다지만 특징 벡터의 차원의 수가 증가함에 따라 종래의 다차원 데이터 구조의 성능은 떨어지는 경향이 있다. $R^{*}-Tree$는 R-Tree의 가장 성공적인 병형으로 본 논문에서 고차원 특징 벡터를 위한 새로운 인덱싱 방법으로서 자기 조직화 맵 기반 $R^{*}-Tree$를 제안한다. 자기 조직화 맵 기잔 $R^{*}-Tree$는 고차원 데이터를 좀더 스칼라화해서 탐색할 수 있도록 SOM과 $R^{*}-Tree$를 결합하여 구축한 인덱싱 기법이다. 자기 조직 맵은 고차원 특징 벡터들로부터 2차원 공간으로의 맵핑을 제공한다. 그러나 맵을 위상 특징 맵이라 하고 인접 노느에서 서로 유사한 특징 벡터들을 모아서 입력데이터의 특징 공간들 속에 유사성을 보존하는데 위상 특징 맵의 각 노드는 코드북 벡터를 가지고 있다. 실험적으로 4만개의 이미지로부터 추출된 색깔 특징 벡터들을 이용하여 자기 조직화 맵 기반 $R^{*}-Tree$의 검색시간 비용과 자기 조직화 맵과 $R^{*}-Tree$의 검색 시간 비용을 비교한다. 그 결과 $R^{*}-Tree$를 구축하는데 필요한 노드 수와 검색 시간 비용이 감소됨으로써 자기 조직화 맵 기반 $R^{*}-Tree$는 자기 조직화 맵과 $R^{*}-Tree$보다 훨씬 우수한 성능을 나타냄이 입증되었다.

  • PDF

장면 이미지로부터 문자-에지 맵 특징을 이용한 텍스트 추출 (Text Extraction using Character-Edge Map Feature From Scene Images)

  • 박종천;황동국;이우람;권교현;전병민
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2006년도 춘계학술발표논문집
    • /
    • pp.139-142
    • /
    • 2006
  • 본 연구는 장면 이미지로부터 텍스트에 존재하는 문자-에지 특징을 이용하여 텍스트를 추출하는 방법을 제안한다. 캐니(Canny)에지 연산자를 이용하여 장면 이미지로부터 에지를 추출하고, 추출된 에지로부터 16종류의 에지-맵 생성한다. 생성된 에지 맵을 재구성하여 문자 특징을 갖는 8종류의 문자-에지 맵을 만단다. 텍스트는 배경과 잘 분리되는 특징이 있으므로 텍스트에 존재하는 '문자-에지 맵'의 특징을 이용하여 텍스트를 추출한다. 텍스트 영역에 대한 검증은 문자-에지 맵의 분포와 텍스트에 존재하는 글자간의 공백 특징으로 한다. 제안한 방법은 다양한 종류의 장면 이미지를 실험대상으로 하였고, 텍스트는 적어도 2글자 이상으로 구성된다는 제한조건과 너무 크거나 작은 텍스트는 텍스트 추출에서 제외하였다. 실험결과 텍스트 영역 추출률은 약 83%를 얻었다.

  • PDF

게임 캐릭터를 위한 폴리곤 모델 단순화 방법 (Polygonal Model Simplification Method for Game Character)

  • 이창훈;조성언;김태훈
    • 한국항행학회논문지
    • /
    • 제13권1호
    • /
    • pp.142-150
    • /
    • 2009
  • 컴퓨터 게임에서 사용하는 복잡한 3차원 캐릭터 모델을 단순한 모델로 만드는 것은 매우 중요하다. 제안 방법은 3차원 게임 캐릭터에서 특징선을 추출하여 모델을 단순화 시키는 새로운 방법에 대해 제안한다. 주어진 3차원 캐릭터 모델은 텍스처 정보를 포함하고 있다. 3차원 캐릭터 모델에서의 텍스처 및 곡률의 변동을 이용해서 2차원 맵인 모델특징맵(Model Feature Map)을 생성한다. 모델특징맵은 곡률 맵(curvature map)과 텍스처 맵(texture map)으로부터 생성되며, 본 맵을 통해 에지 추출 기법을 이용하여 특징선을 추출한다. 모델특징맵은 표준 영상처리툴을 이용해 쉽게 편집할 수 있다. 실험을 통하여 본 알고리즘의 효율성을 보여주며, 실험은 얼굴 캐릭터에 한정하지 않는다.

  • PDF

자기 조직화 맵 기반 유사화상 검색의 고속화 수법 (A Method of Highspeed Similarity Retrieval based on Self-Organizing Maps)

  • 오군석;양성기;배상현;김판구
    • 정보처리학회논문지B
    • /
    • 제8B권5호
    • /
    • pp.515-522
    • /
    • 2001
  • 특징정보를 기반으로 한 유사화상 검색은 화상 데이터베이스에 있어서 중요한 과제의 하나이다. 화상 데이터의 특징정보를 각 화상을 식별하는데 유용한 정보이다. 본 논문에서는 자기조직화 맵기반의 고속 k-NN 탐색 알고리즘을 제안한다. 자기조직화 맵은 학습을 통하여 고차원 특징벡터를 2차원 공간에 맵핑함으로서 위상 특징맵을 생성한다. 위상 특징맵은 입력 데이터의 특징공간의 상호간의 유사성을 가지고 있으며, 각 노드는 노드벡터와 각 노드벡터에 가장 가까운 유사화상이 분류된다. 이러한 자기조직화 맴에 의한 유사화상 분류결과에 대한 k-NN 탐색을 구현하기 위한여, (1) 위상특징 맵에 대한 접근방법, (2) 고속탐색을 위한 pruning strategy의 적용을 실현하였다. 본 연구에서는 실험을 통하여 실제화상으로부터 추출한 색상 특징을 사용하여 제안한 알고리즘의 성능을 평가함으로써 유사화상 검색에 유효한 결과를 얻을 수 있었다.

  • PDF

VCM 의 MSFC 기반 특징 압축을 위한 Min-Max 시그널링을 제외한 특징맵 생성 기법 (A Feature Map Generation Method for MSFC-Based Feature Compression without Min-Max Signaling in VCM)

  • 김동하;윤용욱;김재곤
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.79-81
    • /
    • 2022
  • MPEG-VCM(Video Coding for Machines)에서는 머신비전(machine vision) 네트워크의 백본(backbone)에서 추출된 이미지/비디오 특징 압축을 위한 표준화를 진행하고 있다. 현재 VCM 표준기술 탐색 과정에서 가장 좋은 압축 성능을 보이는 MSFC(Multi-Scale Feature compression) 기반 압축 네트워크 모델은 추출된 멀티-스케일 특징을 단일-스케일 특징으로 변환하여 특징맵으로 구성하고 이를 VVC 로 압축한다. 본 논문에서는 MSFC 기반 압축 모델에서 Min-Max 값 시그널링을 제외한 최소-최대(Min-Max) 정규화를 포함한 개선된 특징맵 생성 기법을 제시한다. 즉, 제안기법은 VCM 디코더에서의 특징맵 복원을 위한 Min-Max 값을 학습 기반으로 생성함으로써 Min-Max 시그널링의 비트 오버헤드 절감뿐만 아니라 별도의 시그널링 기제를 생략한 보다 단순한 전송 비트스트림 구성을 가능하게 한다. 실험결과 제안기법은 이미지 앵커(Anchor) 대비 BPP-mAP 성능에서 83.24% BD-rate 이득을 보이며, 이는 기존 MSFC 보다 1.74%정도 다소 떨어지지만 별도의 Min-Max 시그널링 없이도 기존의 성능을 유지할 수 있음을 보인다.

  • PDF