• Title/Summary/Keyword: 특정화학물질

Search Result 186, Processing Time 0.024 seconds

A Study on the Safety Design Rule Checking System for Automatic Verification of Design Errors (설계오류 자동 검증을 위한 안전 설계 Rule Checking 체계에 관한 연구)

  • Dukhan Kim;Yuho Yang;Youngwoo Chon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.60-68
    • /
    • 2024
  • Purpose: When designing plants and workplaces such as handling and using chemicals, a system that can automatically determine whether the design has been made in compliance with domestic safety management laws is established to shorten the review time and increase accuracy. Method: Safety design standards for chemical handling and use workplaces were investigated, and types and systems were derived that could automatically judge design errors by dividing the articles into semantic units. Result: An automatic design review method performed when designing a building was proposed, and a system that can review the safety design requirements required when designing a chemical handling business site through the development of a rule checker was proposed. After confirming whether the law is subject to application, the safety design rules are classified into semantic units through preprocessing. The classified results can be classified into four types, and the specifications, space, conditions, situations, and specific devices and facilities to reinforce safety were analyzed as representative types. It proposes a system that prepares a diagram for the safety design rule and allows it to be reviewed through the rule checker program.

원자간력현미경(AFM)을 이용한 줄기세포의 신경세포로 분화 인지에 관한 연구

  • Gwon, Sang-U;Yang, U-Cheol;Jeon, Song-Hui;Yu, Bo-Yeong;Choe, Yun-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.558-558
    • /
    • 2012
  • 최근의 원자간력현미경(AFM)은 soft한 생체물질을 비파괴적 방법 및 나노크기의 분해능으로 여러 구조적, 물리적 특성 측정이 가능하여 bio분야에 다양이 활용되고 있다. 본 연구에서는 AFM을 이용하여 줄기세포인 BM MSC(bone marrow mesenchymal stem cell)가 신경세포로 분화 여부를 측정하는 방법을 보고하고자 한다. 신경세포의 신호전달은 시냅스에서 신경전달물질을 매개로 하여 이루어지는데, 신경전달물질 중에 D-Glutamic acid는 시냅스후세포에서 흥분성 전위 크기를 증가시킨 상태를 장기간 유지시켜주는 물질로, 특정물질인 Glutamate와 항원-항체 결합을 한다. 본 연구에서는 이 두 물질간의 항원-항체 반응을 활용하여 줄기세포의 신경세포로 분화 여부를 AFM으로 측정하였다. 먼저, 수용성 시료인 두 물질을 증류수에 용해시켜 Mica 기판에 그 용액을 떨어뜨려 자연건조로 시료를 준비한 후, AFM으로 형태 및 크기를 측정하였다. D-Glutamic acid와 Glutamate는 구형 입자 형태를 보였으며, Glutamate의 너비는 ~100 nm이고, D-Glutamic acid는 ~50 nm였다. 두 물질이 든 용액을 섞었을 때, 항원-항체 반응에 의해 다른 크기의 두 구형입자가 붙어 있는 형태가 관찰되었다. 이 반응을 활용하여, 신경세포에서 분비되는 신경전달물질인 D-Glutamic acid를 선별하였다. DMEM 배지에 신경암세포주인 SH-SY5Y 를 접종한 후 $37.6^{\circ}C$의 incubator에서 24시간 배양하고, 화학적 자극(60~70 mM의 KCl 용액을 주입함)을 주어 신경전달물질 분비를 유도하였다. 그 배지에 항체 Glutamate 를 주입하여 자연건조 시킨 후 항원-항체 결합특성을 AFM으로 측정하여, 항원-항체 결합된 이미지와 동일함을 확인하였다. 결과적으로 AFM을 이용한 신경전달물질의 항원-항체 결합여부 측정을 통해, BM MSC 줄기세포의 신경세포로 분화를 판단할 수 있으며, 이 방법은 줄기세포의 특정 세포로의 분화 여부 판단에 활용될 것으로 기대된다.

  • PDF

An Study on IoT Laundry Monitoring System for Living Safety (생활안전을 위한 세탁물 IoT모니터링시스템에 관한 연구)

  • Kim, Do-Hyung;Kim, Min-Jae;Choi, Seok-Ung;Hwang, Sang-Il;Kim, Myung-Ho;Park, Jin-Ho;Kim, Young-Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.731-732
    • /
    • 2017
  • 빨래 예측 건조 실패 혹은 건망증으로 인해 빨래를 다시 감수해야 하는 피해자들이 속출하고 있다. 또한, 이러한 문제점으로 인한 피해 뿐 아니라 옥시 사건 이후 특정 화학 물질에 대한 사람들의 기피성은 높아져가고 있는 반면에 그 화학물질을 측정할 방법은 없는 것이 현실이다. 이러한 문제점들을 해결하기 위해 본 논문에서는 IoT 시스템을 이용한 모듈을 설치하여, 제시한 문제점에 대한 대안을 제시한다.

Study on the Reduction of Mercury Emission from Flue Gas in Thermal Power Plants (화력발전소 배가스 수은 배출 저감에 관한 연구)

  • 장경룡;백점인;안희수;양완섭;이시훈
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.147-148
    • /
    • 2003
  • 미국을 중심으로 HAPs(Hazardous Air Pollutants: 특정대기유해물질)의 유해성이 확인되면서 TRI(Toxics Release Inventory: 유해화학물질 배출공개제도)를 제도화하여 배출 원 관리를 통해 간접적으로 배출량을 줄이는 한편, 직접적으로는 규제 기준을 마련하여 저감 기술개발을 유도하고 있다. 특히 HAPs에 포함된 물질들 가운데 수은은 환경에서 메칠수은으로 변하여 유독성이 한층 높아지고, 먹이 연쇄과정을 통해 농축되어 가장 관리가 시급히 요구되는 물질로 대두되었다. 이에 따라 미국에서는 의회를 중심으로 배출 규제에 대한 일정을 확정하고, 적정한 규제농도가 정해지는 대로 이를 시행할 예정으로 있다. (중략)

  • PDF

Recent Progress in Colorimetric Assays Using the Absorption of Plasmonic Gold Nanoparticles (플라즈모닉 금 나노입자의 흡광 특성을 활용한 생화학적 비색 분석법 연구 동향)

  • Bong-Geun Kim;Sang Bin Yoon;Sukyeong Hwang;Hyon Bin Na
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.67-78
    • /
    • 2024
  • Light absorption has potential as a signal in biochemical analyses due to its simplicity in measurement and interpretational clarity. Among substances that generate absorption signals, gold nanoparticles possess advantages such as chemical stability, biological compatibility, and unique optical properties from the localized surface plasmon resonance (LSPR) in the visible light range. They also exhibit versatility compared to other colorimetric substances effective only for specific target molecules, as they easily conjugate with various detection active substances like antibodies and aptamers. Particularly due to advantages such as low cost, ease of particle synthesis, and high environmental stability compared to enzyme-based colorimetric methods, gold nanoparticles are extensively researched as signal substances in colorimetric assays. This review summarizes various strategies utilizing gold nanoparticles as absorption signal substances, focusing on recent research. Based on the characteristics of gold nanoparticles, where the optical property is influenced by particle morphology, literature is classified and reviewed based on strategies controlling the shape of gold nanoparticles during signal generation. Through this, it is observed that gold nanoparticles, which have been used as absorption signal substances, continue to be actively researched, affirming their potential for broad and continuous improvement in the future.

Study on the Management Plan for the Preparation of Chemical Terrorism in Multi-use Facilities (다중이용시설 화학테러에 대비한 관리방안 연구)

  • Yoon, Seong Yong;Kim, Si-Kuk;Hong, Sungchul
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.68-78
    • /
    • 2019
  • In modern society, the paradigm of terrorism is shifting to the form of soft targets focusing on an unspecified number of people, which is different from previous terrorist tendencies, and frequent attacks using chemicals. Therefore, this study analyzed the evacuation environment and characteristics, manual analysis of a terror response manual, and the domestic chemical management status of multi-use facilities, and proposed the following management measures for chemical terror prevention in multi-use facilities. First, a multi-use facility guideline for prompt onsite response is proposed. Second, an improvement plan is suggested through the analysis of the manual for counter terrorism. Third, integrated management is proposed through the selection of chemicals available for terrorism. Through this, it is expected that an additional improvement plan will be prepared for countermeasures against chemical terrorism in multi-use facilities. In the future, it will be necessary to analyze the problems through cases of foreign countries and take customized countermeasures.

A Study on GHS Classification of 3-Methylpentane by Subacute Inhalation Toxicity (아급성흡입독성시험을 이용한 3-Methylpentane의 GHS 분류·표시)

  • Chung, Yong Hyun;Han, Jeong Hee;Shin, Seo Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.6-17
    • /
    • 2017
  • Objectives : The purpose of this study was to obtain information regarding Globally Harmonized System(GHS) classification and health hazards that may result from a 4 weeks inhalation exposure of 3-Methylpentane in Sprague-Dawley rats. Methods : The testing method was conducted in accordance with OECD guidelines for the testing of chemicals No. 412(Subacute Inhalation Toxicity). The Rats were divided into 4 groups(5 male and 5 female rats in each group) and exposed to 0 ppm, 284 ppm, 1,135 ppm, 4,540 ppm 3-Methylpentane in each exposure chamber for 6 h/day, 5 days/week, for 4 weeks. After two weeks, the test animals were autopsied and carried out blood test and biochemical tests and histopathological examination. We used PRISTIMA (Toxicology data management system) to confirm the system and to have confidence of the raw data. Results : No death and particular clinical presentation including weight change and change of feed rate was observed. Relationship between dose, gender and response was also not significantly changed in hematologic examination, biochemical examination of blood and blood coagulation time. The histopathologic lesions caused by the test substance did not appear. Conclusions : NOAEL(No Observable Adverse Effect Level) of 3-Methylpentane is more than 4,540 ppm in male group and female group and the Ministry of Employment and Labor Guidance Announcement No. 2013-37(criteria for the classification marks and Safety of Chemicals) Specific target organ toxicity(repeated exposure) was determined with a substance that is not the separator material.

Study on Discharge Characteristics of Water Pollutants among Industrial Wastewater per Industrial Classification and the Probability Evaluation (업종별 산업폐수중 수질오염물질 배출 특성 및 개연성 평가 연구)

  • Ahn, Tae-ung;Kim, Won-ky;Son, Dae-hee;Yeom, Ick-tae;Kim, Jae-hoon;Yu, Soon-ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.1
    • /
    • pp.14-24
    • /
    • 2016
  • Information on the lists of pollutants from industrial wastewater discharge are essential not only to specify the key pollutants to be managed in permission process but to design the treatment facilities by the dischargers. In this study, wastewater quality analysis was conducted for three industrial categories including the specified hazardous water pollutants. The general description of the wastewater occurrence, major sources, treatment facilities are also investigated to obtain integrated database on the pollutant inventories for the industrial categories. In addition Based on the analysis of raw wastewater and final effluent, the detected pollutant items are confirmed by analyzing their presence in the raw or supplement materials, the potential of formation as byproducts, and the possibility of inclusion as impurities. The three industrial categories include petrochemical basic compounds, basic organic compounds, and thermal power generation. The water pollutants emitted from petrochemical basic compound manufacturing facilities are 31 items including 16 specified hazardous water pollutants. Basic organic compound manufacturing facilities discharge 30 kinds of pollutants including 14 specified hazardous water pollutants. Thermal power generation facilities emit 20 pollutants, 8 specified hazardous water pollutants among them. These substances were decided as emission inventories of water pollutants finally through the probability evaluation. The compounds detected for each categories are screened through investigation on the possible causes of their occurrence and confirmed as the final water pollutant inventories.

Measurement of Minimum Inhibitory Concentration of Toxic Chemicals against Pseudomonas aeruginosa and Staphylococcus aureus (유해 화학물질 처리에 의한 녹농균과 포도상구균의 성장저해최소농도 측정)

  • Jiseon An;Jingyeong Kim;Jae Seong Kim;Chang-Soo Lee
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.135-144
    • /
    • 2023
  • Pseudomonas aeruginosa and Staphylococcus aureus are the two most frequently encountered pathogens responsible for chronic wound infections, often coexisting in such cases. These infections exhibit heightened virulence compared to single infections, leading to unfavorable patient outcomes. The interaction among microorganisms within polymicrobial infections has been shown to exacerbate disease progression. Polymicrobial infections, prevalent in various contexts such as the respiratory tract, wounds, and diabetic foot, typically involve diverse microorganisms, with Pseudomonas aeruginosa and Staphylococcus aureus being the most commonly identified pathogens. This study aimed to compare the growth patterns of bacteria under a concentration gradient of toxic chemicals, focusing on a Gram-negative strain of Pseudomonas aeruginosa and a Gram-positive strain of Staphylococcus aureus. The minimum inhibitory concentration (MIC), which signifies the concentration at which bacterial growth is inhibited, was determined by performing broth microdilution and assessing the bacteria's growth curves. The growth curves of both Pseudomonas aeruginosa and Staphylococcus aureus were confirmed, and the exponential growth phases were applied to calculate the doubling times of bacteria. The MIC value for each toxic chemical was determined through broth microdilution. These results allowed for the identification of disparities in growth rates between Gram-positive and Gram-negative bacteria, as well as differences in resistance to individual toxic substances. We expect that this approach has a strong potential for further development towards the innovative treatment of bacteria-associated infections.

A Study on Adequacy Assessment of Protective Action Distance in Hazardous Chemical Accident by AERMOD Modeling (AERMOD 모델링 분석을 통한 유해화학물질 누출사고 시 방호활동거리의 적정성 평가연구)

  • Lim, Chea-Hyun;Doh, Sang-Hyeun
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.7-11
    • /
    • 2015
  • In Korea, The protective action distance based on Canada's ERG has been adopted for safety of residents in case of hazardous chemicals leakage accident. However, it couldn't respond properly on the accidents because of geographical and meteorological differences between two nations. In this study, It was found that the protective action distance varies depending on season and terrain, Through AERMOD modeling analysis for the petrochemical complex reflected local geographical data and meteorological conditions.