• 제목/요약/키워드: 트레이딩 알고리즘

검색결과 23건 처리시간 0.031초

디리클레 분포 기반 모델 기여도 예측을 이용한 앙상블 트레이딩 알고리즘 (Ensemble trading algorithm Using Dirichlet distribution-based model contribution prediction)

  • 정재용;이주홍;최범기;송재원
    • 스마트미디어저널
    • /
    • 제11권3호
    • /
    • pp.9-17
    • /
    • 2022
  • 알고리즘을 이용하여 금융 상품을 거래하는 알고리즘 트레이딩은 시장의 많은 요인들로 인해 그 결과가 안정적이지 못한 문제가 있다. 이 문제를 완화시키기 위해 트레이딩 알고리즘들을 조합한 앙상블 기법들이 제안되었다. 하지만 이 앙상블 방법에도 여러 문제가 존재한다. 첫째, 앙상블의 필요 요건인 앙상블에 포함된 알고리즘의 최소 성능 요건(랜덤 이상)을 만족시키도록, 트레이딩 알고리즘을 선택하지 못할 수 있다는 점이다. 둘째, 과거에 우수한 성능을 보인 앙상블 모델이 미래에도 우수한 성능을 보일 것이라는 보장이 없다는 점이다. 이 문제점들을 해결하기 위해 앙상블 모델에 포함되는 트레이딩 알고리즘들을 선택하는 방법을 다음과 같이 제안한다. 과거의 데이터를 기반으로 상위 성능의 앙상블 모델들에 포함된 트레이딩 알고리즘들의 기여도를 측정한다. 그러나 이 과거 데이터에만 기반 된 기여도들은 과거의 데이터가 충분히 많지 않고 과거 데이터의 불확실성이 반영되어 있지 않기 때문에 디리클레 분포를 사용하여 기여도 분포를 근사시키고, 기여도 분포에서 기여도 값들을 샘플하여 불확실성을 반영한다. 과거 데이터로부터 구한 트레이딩 알고리즘의 기여도 분포를 기반으로 Transformer을 훈련하여 미래의 기여도를 예측한다. 예측된 미래 기여도가 높은 트레이딩 알고리즘들을 앙상블 모델에 선택하여 포함시킨다. 실험을 통하여 제안된 앙상블 방법이 기존 앙상블 방법들과 비교하여 우수한 성능을 보임을 입증하였다.

TimeGAN을 활용한 트레이딩 알고리즘 선택 (Trading Algorithm Selection Using Time-Series Generative Adversarial Networks)

  • 이재윤;이주홍;최범기;송재원
    • 스마트미디어저널
    • /
    • 제11권1호
    • /
    • pp.38-45
    • /
    • 2022
  • 주식 시장에서 안정적으로 높은 수익을 얻기 위하여 많은 트레이딩 알고리즘에 대한 연구들이 이루어졌다. 트레이딩 알고리즘들이 미국 주식시장의 거래량에서 차지하는 비율은 80 프로가 넘을 정도로 많이 사용된다. 많은 연구에도 불구하고 항상 좋은 성능을 나타내는 트레이딩 알고리즘은 존재하지 않는다. 즉, 과거에 좋은 성능을 보이는 알고리즘이 미래에도 좋은 성능을 보인다는 보장이 없다. 그 이유는 주가에 영향을 주는 요인은 매우 많고, 미래의 불확실성도 존재하기 때문이다. 따라서 본 논문에서는 알고리즘들의 수익률에 대한 과거 기록을 바탕으로 미래의 수익률을 잘 예측하고 수익률도 높을 것으로 추정되는 알고리즘을 선택하는 TimeGAN을 활용한 모델을 제안한다. LSTM기법은 미래 시계열 데이터의 예측이 결정론적임에 반하여 TimeGAN은 확률적이다. TimeGAN의 확률적인 예측의 이점은 미래에 대한 불확실성을 반영하여 줄 수 있다는 점이다. 실험 결과로써, 본 논문에서 제안한 방법은 적은 변동성으로 높은 수익률을 달성하고, 여러 다수의 비교 알고리즘에 비해 우수한 결과를 보인다.

사용자 편의성 기반의 알고리즘 트레이딩 시스템 (User Convenience-based Trading Algorithm System)

  • 이주상;김병서
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.155-161
    • /
    • 2016
  • 기존의 알고리즘 트레이딩 시스템에서는 투자전략을 금융사가 제공하는 프로그램밍 언어와 API들을 사용하여 사용자가 직접 프로그래밍 하여야 했기에 일반 투자자들이 사용하기에는 많은 어려움이 있어왔다. 따라서 본 논문에서는 사용자가 프로그래밍에 대한 지식이 없어도 손쉽게 자신의 투자전략을 사용자 인터페이스를 통하여 제시하면 이를 통하여 알고리즘이 형성되어 시스템 트레이딩이 수행되도록 하는 사용자 친화적인 트레이딩 시스템을 개발하는 것을 목적으로 한다. 본 시스템은 금융회사의 서버와 주식 정보를 송수신하고 매매를 수행하는 서버 부분과 투자전략을 설정하기 위한 보조지표들로 이루어진 사용자 인터페이스, 이를 기반으로 알고리즘이 생성되는 부분 등으로 구성되어진 클라이언트로 구성되어진다. 제안된 시스템은 모의 투자 실행을 통하여 사용자가 설정한 투자전략에 따라 설정된 알고리즘에 의하여 자동으로 매매가 이루어짐을 통하여 성능을 검증하였다.

RLS기반 Natural Actor-Critic 알고리즘을 이용한 트레이딩 전략 (Trading Strategy Using RLS-Based Natural Actor-Critic algorithm)

  • 강대성;김종호;박주영;박경욱
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.238-241
    • /
    • 2005
  • 최근 컴퓨터를 이용하여 효과적인 트레이드를 하려는 투자자들이 늘고 있다. 본 논문에서는 많은 인공지능 방법론 중에서 강화학습(reinforcement learning)을 이용하여 효과적으로 트레이딩하는 방법에 대해서 다루려한다. 특히 강화학습 중에서 natural policy gradient를 이용하여 actor의 파라미터를 업데이트하고, value function을 효과적으로 추정하기 위해 RLS(recursive least-squares) 기법으로 critic 부분을 업데이트하는 RLS 기반 natural actor-critic 알고리즘을 이용하여 트레이딩을 수행하는 전략에 대한 가능성을 살펴 보기로 한다.

  • PDF

선물시장에서 러프집합 기반의 유전자 알고리즘을 이용한 최적화 거래전략 개발 (Using genetic algorithm to optimize rough set strategy in KOSPI200 futures market)

  • 정승환;오경주
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권2호
    • /
    • pp.281-292
    • /
    • 2014
  • 최근 알고리즘 트레이딩에 대한 관심이 높아지면서, 인공지능 방법론을 이용한 매매 전략 구축에 관련된 연구들이 활발하게 진행되고 있다. 하지만 복수의 인공지능 방법론을 융합하여 매매 전략 개발에 이용한 사례는 아직 많지 않다. 본 연구는 주가지수선물시장을 바탕으로 인공지능 방법론 중 하나인 러프집합 이론을 적용하여 알고리즘 트레이딩 매매전략을 개발한다. 특히 유전자 알고리즘을 도입하여 생성된 매매전략을 현재시장상황에 최고의 수익률을 보일 수 있도록 최적화한다. 실증분석으로는 2009년부터 2012년까지 4년간의 매매수익률을 분석한 결과 매수 후 보유 전략과 비교하여 우수한 성과를 보였다.

호가잔량정보를 이용한 데이트레이딩전략의 수익성 분석 (Performance Analysis on Day Trading Strategy with Bid-Ask Volume)

  • 김선웅
    • 한국콘텐츠학회논문지
    • /
    • 제19권7호
    • /
    • pp.36-46
    • /
    • 2019
  • 주식시장이 효율적이라면 아무리 잘 고안된 투자전략이라도 시장의 평균 수익을 장기적으로 초과하는 것은 어렵다. 본 연구의 목적은 일부 시장 참여자들 사이에 회자되고 있는 호가잔량 정보효과를 이용하여 장기적으로 높은 수익을 얻을 수 있는지를 실증 분석하는데 있다. 이를 위하여 호가잔량정보를 이용하는 데이트레이딩 전략을 제안하고, 2001년부터 2018년까지의 코스피200 주가지수선물시장에 적용하여 과연 꾸준하게 돈을 벌 수 있는지를 분석하였다. 구체적으로 매수강도지수가 50% 이상이면 가격이 상승할 것으로 예상하고, 반대로 매수강도지수가 50% 미만이면 가격이 하락할 것으로 예상하여 각각 매수포지션과 매도포지션을 진입하여 수익성을 검증하였다. 실증분석 결과는 거래에 수반되는 거래비용을 제하고도 연 평균 71% 이상의 매우 높은 수익을 보여주고 있다. 발생된 수익 역시 분석 기간 전체에서 장기적, 안정적으로 나타나고 있음을 밝혔다. 유전자알고리즘을 이용하여 제안된 투자전략의 수익성을 개선함으로서, 호가잔량정보를 이용하는 투자자들에게 많은 도움이 될 것으로 기대된다.

Support Vector Machines와 유전자 알고리즘을 이용한 지능형 트레이딩 시스템 개발 (Development of an Intelligent Trading System Using Support Vector Machines and Genetic Algorithms)

  • 김선웅;안현철
    • 지능정보연구
    • /
    • 제16권1호
    • /
    • pp.71-92
    • /
    • 2010
  • 최근 트레이딩 시스템에 대한 관심이 높아지면서, 인공지능을 이용한 지능형 트레이딩 시스템의 개발과 관련한 연구들이 활발하게 이루어지고 있다. 그러나 현재까지 소개된 트레이딩 시스템 관련 연구들은 트레이딩에 적용될 수 있는 다양한 변수들이 실무에서 활용되고 있음에도 불구하고, 주가지수에서 파생된 기술적 지표에만 과도하게 의존하는 경향이 있었다. 또한, 실제 수익창출에 초점이 맞추어진 트레이딩 시스템의 모형보다는 주가 혹은 주가지수의 등락에 대한 정확한 예측에 초점을 맞춰 모형을 개발하려고 하는 한계도 존재했다. 이에 본 연구에서는 기존 연구에서 주로 활용되어 온 기술적 지표 외에 현업에서 유용하게 활용되는 다양한 비가격 변수들을 시스템에 반영함으로서 예측 성과의 개선을 도모하는 동시에, Support Vector Machines 기반의 등락예측모형의 결과를 트레이딩 시스템의 매수, 매도, 혹은 유지의 신호로 해석할 수 있도록 설계된 새로운 형태의 지능형 트레이딩 시스템을 제안한다. 제안시스템의 유용성을 검증하기 위해, 본 연구에서는 2004년 5월부터 2009년 12월까지의 KOSPI200 주가지수에 제안모형을 적용하여 그 성과를 살펴보았다. 그 결과, 제안시스템이 수익률 관점에서 다른 비교모형들에 비해 더 우수한 성과를 도출함을 확인할 수 있었다.

분류 알고리즘 기반 주문 불균형 정보의 단기 주가 예측 성과 (Classification Algorithm-based Prediction Performance of Order Imbalance Information on Short-Term Stock Price)

  • 김선웅
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.157-177
    • /
    • 2022
  • 투자자들은 증권회사가 제공하는 시세표인 Limit Order Book 정보를 통해 국내외 투자자들이 제출하는 주문 정보를 실시간으로 파악하면서 거래에 참여하고 있다. Limit Order Book에 실시간으로 공개되고 있는 주문 정보가 주가 예측에서 유용성이 있을까? 본 연구는 장 중 투자자들의 매수와 매도 주문이 어느 한쪽으로 쏠리면서 주문 불균형이 나타나는 경우 미래 주가 등락의 예측 변수로서 유의성이 있는지를 분석하는 것이다. 분류 알고리즘을 이용하여 주문 불균형 정보의 당일 종가 등락에 대한 예측 정확도를 높이고, 예측 결과를 이용한 데이트레이딩 전략을 제안하며 실증분석을 통해 투자 성과를 분석한다. 자료는 2004년 1월 19일부터 2022년 6월 30일까지의 4,564일 동안의 코스피200 주가지수선물 5 분 봉 주가를 분석하였다. 실증분석 결과는 다음과 같다. 첫째, 총매수 주문량과 총매도 주문량의 불균형 정도로 측정하는 주문 불균형지수와 주가는 유의적 상관성을 보인다. 둘째, 주문 불균형 정보는 당일 종가까지의 미래 주가 등락에 대해서도 유의적인 영향력이 나타났다. 셋째, 주문 불균형 정보를 이용한 당일 종가 등락의 예측 정확도는 Support Vector Machines 알고리즘이 54.1%로 가장 높게 나타났다. 넷째, 하루 중 이른 시점에서 측정한 주문 불균형지수가 늦은 시점에서 측정한 주문 불균형지수보다 예측 정확성이 더 높았다. 다섯째, 종가 등락 예측 결과를 이용한 데이트레이딩 전략의 투자 성과는 비교모형의 투자 성과보다 높게 나타났다. 여섯째, 분류 알고리즘을 이용한 투자 성과는 K-Nearest Neighbor 알고리즘을 제외하면 모두 비교모형보다 총수익 평균이 높게 나타났다. 일곱째, Logistic Regression, Random Forest, Support Vector Machines, XGBoost 알고리즘의 예측 결과를 이용한 데이트레이딩 전략의 투자 성과는 수익성과 위험성을 동시에 평가하는 샤프비율에서도 비교모형보다 높은 결과를 보여주었다. 본 연구는 Limit Order Book 정보 중 총매수 주문량과 총매도 주문량 정보의 경제적 가치가 존재함을 밝혔다는 점에서 기존의 연구와 학술적 차별점을 갖는다. 본 연구의 실증분석 결과는 시장 참여자들에게 투자 전략적 측면에서 함의가 있다고 판단된다. 향후 연구에서는 최근 활발히 연구가 진행되고 있는 딥러닝 모형 등으로의 확장을 통해 주가 예측의 정확도를 높임으로써 데이트레이딩 투자전략의 성과를 개선할 필요가 있다.

DQN 강화학습을 이용한 주식 트레이딩에 관한 연구 (A Study on Stock Trading using DQN Reinforcement Learning)

  • 백지원;서대원;송주혜;정인혁;이규영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.906-907
    • /
    • 2023
  • 본 연구는 변동성이 높은 주식시장에서 안정적인 수익창출에 기여할 수 있는 주가예측 강화학 모델을 제안한다. DQN 알고리즘과 LSTM 신경망을 이용하여 시장의 흐름에 따라 전략을 달리하는 모델을 개발하고, 이를 활용한 주식 트레이딩 시스템의 유용성을 확인하고 발전 방향을 제시한다.

유전자 알고리즘을 이용한 Moving Average의 최적 Period 예측 시스템 구현 (A Genetic Algorithm for Optimal Period Forecasting Of Moving Average)

  • 김소영;한치근
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (하)
    • /
    • pp.2447-2450
    • /
    • 2002
  • 주가지수선물시장은 주식투자에 따르는 위험을 효과적으로 관리할 수 있는 제도적 장치로서 오늘날 불안한 주식시장 현황에 있어서 더욱더 중요한 위치를 갖고 있다. 현재 이러한 주가지수선물거래에 있어서 Moving Average 를 예측하고자 하는 여러 트레이딩 시스템을 선보이고 있다. 이 논문에서는 과거의 데이터를 토대로 한 Moving Average Line 분석에 있어서 일반적으로 기존방법보다 효과적이라고 알려진 유전자 알고리즘을 이용하여 Moving Average 의 최적 Period 예측 시스템을 구현한다.

  • PDF