• Title/Summary/Keyword: 트랜스듀서 설계

Search Result 116, Processing Time 0.036 seconds

Detection of Radial Pulse by Combinational Fiber-optic Transducer (조합형 광섬유 트랜스듀서에 의한 요골맥파의 검출)

  • Park, Seung-Hwan;Hong, Seung-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.197-202
    • /
    • 1998
  • The human pulse wave is a vital biosignal that includes the diagnostic data related with the heart and the cardiovascular system of human body. Based on the mechanical transducing method, a pulse detection transducer using optical fiber was developed to acquire the pulses non-invasively. To improve the detection efficiency, we proposed a new design that consists of two combinational parts; detecting part, which is in contact with the pulsating skin and transmits the displacement motion of the pulsating skin to the sensing part, and sensing part, which converts the physical quantity transmitted from the detecting part to electronic signal. By using the new method, we confirmed that the proposed transducer can detect the C point(incisura) and the T wave(tidal wave) which is not easily detected by existing transducers.

  • PDF

Numerical Analysis of Ultrasonic Beam Profile Due to the Change of the Number of Piezoelectric Elements for Phased Array Transducer (Phased Array트랜스듀서에 있어서 구성 압전소자수의 변화에 따른 초음파 빔 전파 특성의 수치 해석)

  • Choi, Sang-Woo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.207-216
    • /
    • 1999
  • A phased array is a multi-element piezoelectric device whose elements are individually excited by electric pulses at programmed delay time. One of the advantages of using phased array in nondestructive evaluation (NDE) application over conventional ultrasonic transducers is their great maneuverability of ultrasonic beam. There are some parameters such as the number and the size of the piezoelectric elements and the inter-element spacing of the elements to design phased array transducer. In this study, the characteristic of ultrasonic beam for phased array transducer due to the variation of the number of elements has been simulated for ultrasonic SH-wave on the basis of Huygen's principle. Ultrasonic beam directivity and focusing due to the change of time delay of each element were discussed due to the change of the number of piezoelectric elements. It was found that ultrasonic beam was much more spreaded and hence its sound pressure was decreased as steering angle of ultrasonic beam was increased. In addition, the ability of ultrasonic bean focusing decreased gradually with the increase of focal length at the same piezoelectric elements. However, the ability of beam focusing was improved as the number of consisting elements was increased.

  • PDF

Design and Piezoelectric properties of 2-2 piezocomposite Ultrasonic Transducers by means of the Finite Element Methode (유한요소해석법을 이용한 2-2형 압전복합재료 초음파 트랜스듀서의 설계 및 압전특성)

  • Park, Jae-Sung;Lee, Sang-Wook
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.40-46
    • /
    • 2011
  • In this study, PZT-5A green sheet were prepared by using tape casting technique, and the piezoelectric properties of PZT-5A by variation of sintering temperature was investigated. After, design and piezoelectric properties of 2-2 piezocomposite ultrasonic transducers by menas of the FEA. The acoustic impedance and piezoelectric charge constant of the 2-2 type piezocomposite transducer decreased proportionally due to the density decrease caused by the PZT volume fraction decrease. The piezocomposite acoustic impedance were 7~3 MRayl between 0.6 and 0.2 allowing it to be used for a ultrasonic transducer. The resonance characteristics and the electro-mechanical coupling factor were the best when the volume fraction PZT was 0.6. The PZT volume fraction shows the fixed value, 0.6~0.65, approximately within the range between 0.2 and 0.6 while it is increased to decreased over the range. The result of the experiment above confirmed that the 2-2 piezoelectric composites could be used as the ultrasonic transducers.

Design and Construction of the Acoustic Horn for Magnetostrictive Ultrasonic Transducer (자왜형 초음파 트랜스듀서용 도파봉의 설계 및 제작)

  • 강국진;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.57-65
    • /
    • 2001
  • In this paper, we designed the acoustic horn for magnetostrictive ultrasonic transducers in a theoretical manner, and validity of the analysis was verified through comparison with the results of finite element analysis. Results of the two analysis methods showed good agreement with each other. The theoretical method can fairly quickly determine the horn length that satisfies given frequency specification, but also has the drawback that it is applicable only to the frequency range over the cut-off frequency. According to the results, the catenoidal horn can provide larger amplification than the exponential horn. It was also found that it is more desirable for the region having the catenoidal curvature to be as short as possible to achieve larger amplification of the transducer deformation. Based on the analysis results, a magneto-strictive transducer sample was fabricated and its performance was evaluated experimentally. The transducer has the resonance frequency of 19.3 ㎑ as well as the maximum SPL of 199 dB, and shows the omni-directional radiation pattern.

  • PDF

Bulk Shear-Wave Transduction Experiments Using Magnetostrictive Transducers with a Thin Fe-Co Alloy Patch (철-코발트 합금 패치로 구성된 자기변형 트랜스듀서를 이용한 체적 전단파 발생 및 측정)

  • Park, Jae-Ha;Cho, Seung-Hyun;Ahn, Bong-Young;Kwon, Hyu-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1075-1081
    • /
    • 2010
  • Recently, the results of many studies have clarified the successful performance of magnetostrictive transducers in which a ferromagnetic patch is used for the transduction of guided shear waves; this is because a thin ferromagnetic patch with strong magnetostriction is very useful for generating and detecting shear wave. This investigation deals with bulk shear wave transduction by means of magnetostriction; on the other hand, the existing studies have been focused on guided shear waves. A modular transducer was developed; this transducer comprised a coil, magnets, and a thin ferromagnetic patch that was made of Fe-Co alloy. Some experiments were conducted to verify the performance of the developed transducer. Radiation directivity pattern of the developed transducer was obtained, and a test to detect the damage on a side drill hole of a steel block specimen was carried out. From the results of these tests, the good performance of the transducer for nondestructive testing was verified on the basis of the signal-to-noise ratio and narrow beam directivity.

Directivity Analysis for Optimal Design of Ultrasonic Angle Beam Transducer (초음파 사각 트랜스듀서의 최적설계를 위한 지향성 해석)

  • Nam, Young-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.796-803
    • /
    • 2008
  • Ultrasonic testing uses the directivity of the ultrasonic wave, which propagates in on direction. The directivity is expressed as the relationship between the propagate direction and its sound pressure. The directivity of an ultrasonic wave is related to the choice of probe arrangement, testing sensitivity and scanning pitch and correct measurement of defect size and location. This paper describes on the directivity measurement of ultrasonic wave using the visualization method. The directivity of shear wave emitted from the angle beam transducer were constant during propagation. The difference of directivity was existed between 2 MHz and 4 MHz angle beam transducers. When these experimental results were compared with the theory which was based on the continuous wave, it showed good agreement with theoretical directivity on the principal lobe.

A Design of Transducer Interface Protocol for Context-aware Middleware (상황인식 미들웨어를 위한 트랜스듀서 인터페이스 프로토콜 설계)

  • Jang, Dong-Wook;Sohn, Surg-Won;Han, Kwang-Rok;Sun, Bok-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.45-55
    • /
    • 2011
  • Context awareness technologies are based on efficient sharing of environment information of ubiquitous sensors in everyday life, and users require this awareness technologies to get quality of services. However, the application has been restricted due to its varieties of sensors and many different methods of communications. Therefore, IEEE 1451 standard has been published to interface between sensors and network layer. But it does not connect to a middleware because IEEE 1451 is for transducer standards. This paper presents a transducer and application interface protocol which connect to the context-aware middleware by defining a protocol to obtain context information using XML. We have implemented a bridge health monitoring system and railroad monitoring system in which different sensors and users' application are used to prove the efficacy of proposed interface protocols.

A Study on the transducer development and multi-point signal and its directivity detection of FBG(Fiber Bragg Grating) hydrophone (FBG(Fiber Bragg Grating) 하이드로폰의 트랜스듀서 개발과 다중점 신호 검출 및 지향성에 관한 연구)

  • 김경복
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9B
    • /
    • pp.1551-1562
    • /
    • 2000
  • In the using of FBG developed in home land, we designed and manufactured three types of FBG sound transducers the first in Korea. On FBG transducers manufactured we made an demonstrated on respective frequency response peculiarties in the water and analyzed the special characters. As the experimental result on frequency response peculiarities, we made t possible underwater acoustic detection on C type to maximum 18kHz, And for the purpose of realization on multi-point signal detection on wide scope in the water, in the using of WDM(Wavelength Division Multiplexing) method and passive band-pass filter system, established arrays system and succeeded in multi-point underwater acoustic signal detection to the frequency 1.3KHz out of the two B type FBG transducers. Additionally, it would be possible directivity detection for the objects of its source as the intensity of detection signal varies with the sound source's direction and angle. From now on we prepared a new moment on the practical used study on FBG hydrophone.

  • PDF

Forward-Looking Ultrasound Imaging Transducer : I. Analysis and Design (전향 초음파 영상 트랜스듀서 : I. 해석 및 설계)

  • Lee, Chan-Kil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2E
    • /
    • pp.73-86
    • /
    • 1995
  • The transducer section of the forward-looking ultrasound imaging catheter (FLUIC) consists of a circular piezoelectric element as a vibrator and a conical acoustic mirror as a perfect reflector. A small diameter piezoelectric transducer element is mounted on the side of a catheter's rotating shaft. The unique design of FLUIC provides the capability to form a two-dimensional image of a cross-section of vessel in front of the catheter, which is lacking in the present generation of intravascular ultrasound (IVUS) transducers, as well as a conventional side view image. The mirror configuration for the transducer section of the FLUIC is designed using an approximated ray tracing techniques. The diffraction transfer function approach [1] developed for the field prediction from primary sources is generalized and extended to predict the secondary diffraction characterstics from an acoustic mirror. The extended model is verified by simulation and experiment through a simple plane reflector and employed to analyzed the field characteristics of a FLUIC.

  • PDF