• Title/Summary/Keyword: 트랙 추종 시스템

Search Result 12, Processing Time 0.022 seconds

Track-Following Control for High-Speed Optical Disk Drives (고배속 광 디스크 드라이브 시스템의 트랙 추종 제어)

  • Cho, Seong-Il;Jin, Ju-Hwa;Jung, Soo-Yul;Seo, Joong-Eon;Shin, Dong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2008-2010
    • /
    • 2001
  • 최근에 광 디스크 기기의 고배속화에 따라서 디스크의 재생 속도는 점차로 증가하고 있다. 이러한 경향에 따라 트랙킹 제어 루프에서 나타나는 디스크의 편심에 의한 외란의 영향은 더욱 커지게 되므로 기존의 선형 제어기만으로는 디스크의 편심량이 큰 경우에 고배속에서 원하는 트랙 추종 성능을 얻을 수가 없다. 본 논문에서는 이러한 문제점을 해결하기 위해서 반복 학습 제어 알고리즘과 드라이브 시스템의 액츄에이터의 주파수 응답 특성을 이용한 새로운 트랙 추종 제어 방법을 제안한다. 또한, 제안된 트랙 추종 제어 시스템의 제어 성능을 실험을 통하여 검증하여 본다.

  • PDF

Design and Implementation of Periodic Disturbance Compensators for Track Following Servo Systems (트랙 추종 서보 시스템에 대한 주기적 외란 보상기의 이득 설정과 구현)

  • Jeong, Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.139-145
    • /
    • 2014
  • Periodic disturbance compensators are widely used in track following servo systems. They are commonly designed and implemented by adaptive feedforward compensators or internal model based compensators. In track following servo systems, the gains of the compensators should be determined considering the change of the sensitivity transfer function and the implementation methods should be selected considering the system environment. This paper proposes a guide for determining gains of the periodic disturbance compensators. Various simulation and experimental results are presented to see the effect of gains. In addition, this paper introduces the various types of implementation methods and compares their merits and demerits.

Design of a Robust Track-following Controller with Multiple Constraints (다중 제한 조건을 고려한 강인 트랙 추종 제어기의 설계)

  • Jin Kyoun Bog;Kim Jin-Soo;Lee Moon-Noh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.827-836
    • /
    • 2004
  • In this paper, we design a robust multi-objective track-following controller that satisfies transient response specifications and diminishes the influence of sinusoidal disturbance. To this end, a robust control problem with the multiple constraints is considered. We show that a sufficient condition satisfying the robust control problem can be expressed by linear matrix inequalities. Finally, the robust track-following controller can be designed by solving an LMI optimization problem. The effectiveness of the proposed controller design method is verified though experiments.

Repetitive Control for the Track-Following Servo System of an Optical Disk Drive (광 디스크 드라이브의 트랙 추종 서보 시스템을 위한 반복 제어)

  • 문정호;이문노;정명진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.39-46
    • /
    • 1999
  • Disturbances acting on the track-following servo system of an optical disk drive inherently contain significant periodic components that cause tracking errors of a periodic nature. Such disturbances can be effectively rejected by employing a repetitive controller, which must be implemented carefully in consideration of system stability. Plant uncertainty makes it difficult to design a repetitive controller that will improve tracking performance yet preserve system stability. In this paper, we examine the problem of designing a repetitive controller for an optical disk drive track-following servo system with uncertain plant coefficients. We propose a graphical design technique based on the frequency domain analysis of linear interval systems. This design method results in a repetitive controller that will maintain system stability against all admissible plant uncertainties. We show simulation and experimental results to verify the validity of the proposed design method.

  • PDF

Improvement of Tracking Servo Performance in SIL based Near-field Recording using Disturbance Observer (외란 관측기를 이용한 근접장 기록 시스템의 트랙킹 서보 성능 향상)

  • Kang, Min-Seok;Kim, Joong-Gon;Shin, Won-Ho;Jeong, Jun;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.609-612
    • /
    • 2008
  • The solid immersion lens (SIL) based near-field recording (NFR) system is considered as one of the high density optical data storage system. For the NFR servo system, tracking servo control is a difficult technology to maintain extremely small gap between SIL and media within one twentieth. This is because the track pitch is decreased for increasing the recording density. In this paper, we propose disturbance observer (DOB) and internal model principle (IMP) for disturbance rejection due to eccentricity of disk. The performance of tracking controller using DOB is increased by about 85%, 94%, 97% using Q filters that have bandwidths of 50Hz, 125Hz, 250Hz, respectively. Moreover, IMP based controller is effectively reduced the residual error.

  • PDF

Track-Following Control of a Hard Disk Drive Actuator Using Nonlinear Robust Deterministic Control (비선형 견실 확정제어를 이용한 하드디스크 드라이브의 트랙추종제)

  • Wie, Byung-Yeol;Kang, Chul-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.881-887
    • /
    • 2000
  • There are significant nonlinearities and uncertainties in hard disk drive actuators. In particular, pivot bearing nonlinearity and repeatable run-out make track-following control difficult as track density increases. In this paper, we design a robust track-following controller using a robust deterministic control scheme in which the pivot bearing nonlinearity and repeatable run-out are considered as uncertainties. Simulation study is conducted to evaluate the control performance of the proposed control scheme.

  • PDF

Tracking Performance Improvement for Optical Disk Drive Using Error-based Modified Disturbance Observer (오차 기반의 수정된 외란 관측기를 이용한 광디스크 드라이브의 트랙 추종 성능 향상)

  • Kim Hong-Rok;Choi Young-Jin;Suh Il-Hong;Chung Wan-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.637-643
    • /
    • 2006
  • Generally, the tracking performance of optical disk drive(ODD) system can be improved using a disturbance observer(DOB). However, a DOB is not easily applied in an ODD system because an additional microprocessor, such as a digital signal processor(DSP), is needed. This paper shows how a DOB system can be replaced by the error-based modified disturbance observer(EM-DOB) when two mathematical conditions are satisfied. Due to the simplified structure of EM-DOB, the algorithm is easily implemented as an analog circuit, which is suitable for the ODD servo system. Additionally, in these algorithms, disturbances rejection performances can be tuned as Q filter parameters. Similar to a DOB system, three design guidelines of a Q filter can be applied. Experimental results of DOB and EM-DOB are evaluated under forced disturbances.

Tracking Performance Improvement of Optical Disk Drive System (광디스크 드라이브 시스템의 트랙 추종 성능 향상 방법)

  • Kim Hong Rok;Suh Il Hong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.372-375
    • /
    • 2005
  • The tracking performance of optical disk drive(ODD) system can be improved using disturbance observer(DOB). But, DOB was not easily applied in the ODD system because the additional microprocessor was needed. In this paper, we propose an error-based modified disturbance observer(EM-DOB) for ODD system. Due to the simplified structure of EM-DOB, the system is easily implemented to the digital control algorithm or the analog circuit. In these algorithms, disturbances rejection performance of system can be tuned as Q filter parameters are selected. Based on analysis of sensitivity function, three guidelines of Q filter design are suggested. Experimental results of DOB and EM-DOB are evaluated under the forced disturbances.

Asymptotic Disturbance Rejection using a Disturbance Observer in the Track-Following Control System of a High-Speed Optical Disk Drive (고배속 광디스크 드라이브 트랙 추종 제어 시스템에서의 외란 관측기를 이용한 점근적 외란 제거)

  • 유정래;문정호;진경복;정명진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.402-410
    • /
    • 2004
  • To obtain a good tracking performance in an optical disk drive servo system, it is essential to attenuate periodic disturbances caused by eccentric rotation of the disk. As an effective control scheme for enhancing disturbance attenuation performance, disturbance observers (DOBs) have been successfully applied to the track-following servo system of optical disk drives. In disk drive systems, the improvement of data transfer rate has been achieved mainly by the increase of disk rotational speed, which leads to the increase of the disturbance frequency. Conventional DOBs are no longer effective in disk drive systems with a high-speed rotation mechanism because the performance of conventional DOBs is severely degraded as the disk rotational frequency increases. This paper proposes a new DOB structure for effective rejection of the disturbance in optical disk drives with a very high rotation speed. Asymptotic disturbance rejection is achieved by adopting a band-pass filter in the DOB structure, which is tuned based on the information on the disturbance frequency. In addition, performance sensitivity of the proposed DOB to changes in disk rotational frequency is analyzed. The effectiveness of the proposed DOB is verified through simulations and experiments using a DVD-ROM drive.

Repetitive Control for Track-Following Servo of an Optical Disk Drive Using Linear Matrix Inequalities (선형 행렬 부등식을 이용한 광 디스크 드라이브의 트랙 추종 서보를 위한 반복 제어)

  • 도태용;문정호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.117-123
    • /
    • 2003
  • Rotational machines such as optical disk drives, hard disk drives, and so on are subject to periodic disturbances caused by their mechanical characteristics. In the meanwhile, it is well known that repetitive control rejects periodic disturbance effectively. This paper presents a practical application of repetitive control to the track-following servo of an optical disk drive. The repetitive control system is composed of two repetitive controllers which compensate for periodic disturbances generated by track geometry and eccentric rotation of disk and a feedback controller stabilizing the feedback loop. A robust stability for all plant uncertainties is proved using linear matrix inequalities (LMIs). In the controller design, a weighting function is introduced for the feedback controller to ensure a minimum loop gain and a sufficient phase margin. The repetitive controllers and the feedback controller are designed by solving an optimization problem which can consider the robust stability condition and the system performance. The developed repetitive control system is implemented in the digital control system with a 16-bit fixed-point digital signal processor (DSP). Through simulation and experiment. The feasibility of the proposed repetitive control system is verified.