• Title/Summary/Keyword: 트라이볼로지 코팅

Search Result 158, Processing Time 0.029 seconds

An Experimental Study on the Rolling Resistance of Bearing Surfaces Covered by Pure Tin and Zinc Films (주석 및 아연 박막이 코팅된 베어링 표면의 구름 저항 거동에 대한 실험적 고찰)

  • 양승호;공호성;윤의성;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.51-58
    • /
    • 1997
  • An experimental study was performed to discover the tribological behaviors of pure tin and zinc coated 52100 bearing steel. Pure tin coatings ranging from 30 nm to 30,000 nm and pure zinc coatings ranging from 500 nm to 52,000 nm were produced by a thermal evaporation coating method. Experiments using a thrust ball bearing-typed rolling test-rig were performed for the investigations of the effect of coating thickness on the tribological rolling behavior. Results showed that the existence of optimum film thickness which revealed minimum rolling resistance was discovered for tin and zinc coating. The compatibility of coating matehal to iron showed no significant effect on the rolling resistance behavior. The hardness of coating material revealed significant influence to the rolling resistance behavior.

  • PDF

Investigation of Micro-tribological Properties of Coated Silicon Wafer under Light Load (코팅된 실리콘웨이퍼의 미소 마찰마멸특성에 관한 연구)

  • 차금환;김대은
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.29-38
    • /
    • 1999
  • In recent years, the tribological behavior of coated ceramic material has been the issue of much interest. Particularly, the understanding of the tribological performance of thin film under light load is important for its potential in applications of MEMS. The friction and wear behavior of ceramic material that occur at light load depends on several factors such as surface roughness, contact area and material properties. In this work, the tribological behavior of coated silicon under light load and low speed was investigated. Particularly, the effects of coated materials, humidity and undulated surface were also studied. The results show that the effect of humidity on fiction was influenced by the apparent area of contact between the two surfaces. Also both adhesive and abrasive wear occurred depending on the sliding condition. Finally, undulations on the silicon wafer were found to be effective in trapping wear particles and resulted in the reduction of friction.

An Experimental Study on the Effect of Wear Particles on the Sliding Behavior of Silver-Coated Bearing Steels (은 박막이 코팅된 베어링강의 마찰거동에 미치는 마모입자의 영향에 대한 실험적 고찰)

  • 양승호;공호성;윤의성;김대은
    • Tribology and Lubricants
    • /
    • v.17 no.3
    • /
    • pp.221-227
    • /
    • 2001
  • The effect of silver particles on the sliding behavior of bearing steels was studied experimentally by using a ball-on-disk tribometer. Tests were performed in ambient air, dry air and vacuum. Disks of AISI 52100 were silver-coated by a thermal evaporation method, and the effects of silver particle transfer on friction were analyzed. In order to understand further the mechanism of silver particle transfer and its effect on friction and wear, pre-compressed silver particles were artificially introduced into the friction interface and the results were compared to those of silver-coated specimens. Results showed that the introduced silver particles produced transfer layers and resulted in low friction. It also showed that this low friction is closely related to the characteristic behavior of transfer layers. Shakedown occurred at the friction interface affected the friction and wear.

최근 미국의 Tribology 연구현황과 전망에 관하여

  • 강석춘
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1987.06a
    • /
    • pp.19-25
    • /
    • 1987
  • 현재 미국의 Tribology 분야는 일본과의 경쟁의식과 에너지 절약의 측면에서 활발히 연구되고 있고 세라믹을 이용한 마찰 재료의 개발과 특수 윤활유 개발의 두가지 분야로 구분하여 살펴 볼 수 있다. 먼저 마찰 재료개발은 공업용 세라믹을 마찰 마모특성에 적합한 재료.합성 및 제조과정등을 각 대학 금속재료 분야의 학자와 관련회사 중심으로 개발되고 있다. 또 세라믹 특성과 금속의 특성을 함께 이용하기 위한 coating 재료 및 방법이 활발히 연구되어 자동차 시린티의 coating등 실용화를 위한 시험중에 있다. 각 세라믹의 고유 성질을 합성시키기 위한 세라믹 복합재 개발도 국립연구소 등에서 연구되고 있고 고속 이온화 코팅방법도 최근 Argonne등 연구소에서 개발 중이어서 앞으로 실용화 단계에 이를 것으로 예상된다. 윤활유 개발로는 저마찰 특성을 갖는 첨가제 개발과 세라믹용 윤활유 개발이 진행되고 있고 고속 고온 마찰용 분말 혹은 기체 윤활제가 개발중에 있다. 따라서 위 내용을 앞으로의 전망과 함께 살펴 보겠다.

  • PDF

High Temperature Tribological Behaviors of Nitride Based Ceramic Coatings (나이트라이드계 세라믹 코팅의 고온 마모, 마찰거동)

  • 김장엽;임대순;이상로;백운승
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.83-86
    • /
    • 1996
  • In this study, CrN, TiN and TiN + CrN coatings have treated onto the steel substrates by ion plating to improve their tribological behaviors. Some of the specimens were ion nitriding treated to study the effect of ion nitriding on wear behavior. The wear tests were performed with these specimens by ball-onplate type and disc-on-plate type wear tester. It was demonstrated that ion nitriding treatment improve wear resistance of the coatings. The results of high temperature wear tests indicated that the specimens coated with CrN were exhibited the better wear resistance properties than the specimens with TiN coatings

  • PDF

Effect of Sealing Process on the Tribological Behavior of the Plasma Spray Zirconia Based Coatings (지르코니아 충전이 지르코니아계 용사코팅층의 마모마찰에 미치는 영향)

  • 신종한;임대순;안효석
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.265-271
    • /
    • 1998
  • High temperature wear behavior of plasma sprayed zirconia based coating sealing with zirconia sol were investigated for high temperature wear resistance application. The zirconia powders containing 2.5, 5.0, 7.5, 10.0 mol% of MoS$_2$, $Fe_2O_3$ for plasma spray were made by spray drying method. As-sprayed coating was sealed by zirconia-sol to fill up the pore and crack in coating. wear test were performed at temperature ranges from room temperature to 600$\circ$C. The microstructural changes of before and after sealing process were examined by SEM, XRD and EPMA. After sealing process, the porosity was decreased and micro-hardness was increased. The wear properties of coating after sealing process were improved by sealing of pores and cracks. The behavior of wear amount and coefficient of friction were same tendency to before sealing process.

  • PDF

Fretting Wear Mechanisms of TiN Coated Nuclear Fuel Rod Cladding Tube (TiN 코팅한 핵연료봉 피복재의 프레팅 마멸기구)

  • 김태형;성지현;김석삼
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.453-458
    • /
    • 2001
  • The fretting wear of a nuclear fuel rod it a dangerous phenomenon. In this study, TiN coating was used to reduce the fretting wear of Zircaloy-4 tube, a nuclear fuel rod cladding material. TiN coating is probably one of the molt frequently and successfully used PVD coatings for the mitigation of fretting wear. The fretting tester was designed and manufactured for this experiment. The number of cycles, slip amplitude and normal load were selected as main factors of fretting wear. The results of this research showed that wear volume was improved 1.3∼3.2 times with TiN coating. The worn surfaces were observed by SEM. Wear mechanism at lower slip amplitude was the brittle cracks and rupture of TiN coating. However, adhesive and abrasive wear were mainly observed on most surfaces at higher slip amplitude.

The Effect of Oxide Layer Formed on TiN Coated Ball and Steel Disk on Friction Characteristics in Various Sliding Conditions (미끄럼조건에 따라 TiN 코팅볼과 스틸디스크에 형성되는 산화막이 마찰특성에 미치는 영향)

  • 조정우;이영제
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.459-466
    • /
    • 2001
  • In this study, the effects of oxide layer formed on the contact parts of TiN coated ball and steel disk on friction characteristics in various sliding conditions were investigated. AISI52100 steel ball was used for the substrate of coated ball specimens, which were prepared by depositing TiN coating with 1(m in coating thickness. AISI1045 steel was used for the disk type counter-body. To investigate the effect of oxide layer on the contact parts of two materials, the tests were performed both in air for forming oxide layer on the contact parts and in nitrogen environment to avoid oxidation. From the test results, the frictional characteristic between the two materials was predominated by iron oxide layer that formed on wear tract of counter-body and this layer caused friction transition and high friction. And the adhesive wear occurred from steel disk to TiN coated ball caused the formation of oxide layer on counter parts between the two materials.

Friction and Wear Behavior of Coating and Surface Treated Steel for Low Velocity High Pressure Application (코팅 및 표면 처리된 강의 고하중 영역에서의 마모 마찰 특성)

  • Lim, Dong-Phill;Shim, Dong-Seob;Kim, Sang-Beom
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.386-392
    • /
    • 2008
  • Friction and wear behavior of hard coated and surface treated steel with candidate processing methods for low velocity high pressure application investigated. Wear tests were carried out under specific region considering the operation condition of construction equipments under lubricated and unlubricated condition. Different tribological behavior analyzed with comparing the wear rate of counter part, morphology and topography of worn surface and the worn volume of samples and counter parts.

The Effect of Ball-milling Energy on Combustion Synthesis Coating of Cu-Al-Ni Based Intermetallics (Cu-Al-Ni계 금속간화합물의 연소합성 Coating에 미치는 Ball Mill처리의 영향)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • The possibility of Cu-Al-Ni intermetallic coating on the mild steel through the combustion synthesis has been investigated. In particular, the effect of the ball milling energy on the microstructure of the coating layer was examined to obtain the best coating condition. Experimental results show that Cu-Al-Ni powder compact was explosively synthesized and successfully coated with the steel matrix. It was revealed that the formation of $Cu_9Al_4$ intermetallic decreased with increase in the ball milling energy. This result supports that the high energy ball milling would be effective for obtaining the most suitable microstructure for Cu-Al-Ni coating layer. However, the excessive ball milling energy seems to decrease the bonding strength between the coating layer and the matrix.