• Title/Summary/Keyword: 튜브 구조물

Search Result 141, Processing Time 0.025 seconds

Effect of AlF3 on Zr Electrorefining Process in Chloride-Fluoride Mixed Salts for the Treatment of Cladding Hull Wastes (폐 피복관 처리를 위한 염소계-불소계 혼합용융염 내 지르코늄 전해정련공정에서 삼불화알루미늄의 효과 연구)

  • Lee, Chang Hwa;Kang, Deok Yoon;Lee, Sung-Jai;Lee, Jong-Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • Zr electrorefining is demonstrated herein using Zirlo tubes in a chloride-fluoride mixed molten salt in the presence of $AlF_3$. Cyclic voltammetry reveals a monotonic shift in the onset of metal reduction kinetics towards positive potential and an increase in intensity of the additional peaks associated with Zr-Al alloy formation with increasing $AlF_3$ concentration. Unlike the galvanostatic deposition mode, a radial plate-type Zr growth is evident at the top surface of the salt during Zr electrorefining at a constant potential of -1.2 V. The diameter of the plate-type Zr deposit gradually increases with increasing $AlF_3$ concentration. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX) and X-ray photoelectron spectroscopy (XPS) analyses for the plate-type Zr deposit show that trace amount of Al is incorporated as Zr-Al alloys with different chemical compositions between the top and bottom surface of the deposit. Addition of $AlF_3$ is effective in lowering the residual salt content in the deposit and in improving the current efficiency for Zr recovery.

A study on the residual stress at the weld joint of 2.25Cr-1.6W heat resistant steel (보일러용 배관재 2.25Cr-1.6W계 내열강의 용접부 응력 해석)

  • Lee, Y.S.;Lee, K.W.;Lee, J.B.;Kim, Y.D.;Kong, B.W.;Ryu, S.H.;Kim, J.T.;Kim, B.S.;Jang, J.C.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.62-62
    • /
    • 2009
  • 석탄화력발전소의 CO2배출량 감소와 고효율, 대용량화로 인해 초초임계압(USC:Ultra Super Critical) 화력발전소의 건설이 증가하고 있다. USC 발전소는 효율향상을 위한 증기온도와 압력의 상승 때문에 보일러 고온고압부에 기존의 소재에 비해 고온강도와 내산화성의 재료물성이 향상된 신소재 적용이 불가피하다. 특히 사용된 신소재 중에서 보일러 본체를 구성하는 수냉벽관(Water wall), 과열기와, 재열기용 튜브 및 후육부인 헤더와 배관재로 기존의 2.25Cr-1Mo강을 개량한 2.25Cr-1.6W계 내열강이 적용되고 있다. 2.25Cr-1.6W강은 SMI와 MHI가 공동개발한 소재로 1995년 튜브제품이, 1999년에 단조, 파이프재, 플레이트제품이 ASME code case로 등재되었고, 2009년 ASME code case 2199-4로 개정되어 사용 중이다. 이 소재는 2.25Cr-1Mo강에 고온강도 개선을 위해 석출강화효과가 있는 V과 Nb을 첨가하였고, 탄화물의 열적안정성과 고용강화효과 증대를 위해 W을 첨가하였다. 그리고 제작성과 용접성 및 재료의 인성 향상을 위해 B첨가와 C함량을 낮추었다. 합금성분의 첨가와 조정에 의해 고온강도는 개선되었지만, 보일러 설치 및 보수를 위한 용접과정에서 용접금속과 CGHAZ(Coarse Grain HAZ)에서 용접균열이 발생하였다. 대부분의 용접균열은 용접결함이나 고온 혹은 저온균열이 아닌 2.25Cr-1.6W계강의 강도 개선을 위해 첨가한 V과 Nb이 용접후열처리 도중 입내에 MX형태의 미세석출로 입내를 강화시킴으로서 발생한 재열균열 민감성 증대에 기인된 것으로 판단된다. 이에 본 연구에서 용접 및 후열처리 과정에서 용접금속과 HAZ에서 발생하는 용접금속의 응력분포를 전산해석을 통해 확인하고 실제 후육파이프 용접부에서 잔류응력을 측정해 비교하였다. 용접부 응력분포는 SYSWELD 프로그램을 사용해 해석을 수행하였고, 발전소 실배관재의 용접부 응력측정은 수평부 측정이 용이하도록 지그를 부착한 Potable 잔류응력측정기를 사용해 Hole Drilling Method(HDM)를 적용하여 잔류응력을 측정하였다. 해석 결과 CGHAZ부위의 잔류응력이 용접금속과 기타 부위에 비해 높은 응력분포를 나타냈으며, 이는 CGHAZ와 용접용융선 부근에서 균열이 발생하는 실제값과 일치하는 결과를 보였다. 실제 배관재 용접부에서 측정한 잔류응력값은 항복응력의 약 50% 이하 응력값을 나타냈다. 배관 구조에 기인한 시스템응력의 영향을 제거하기 위해 배관재 용접부를 중심으로 양끝단을 절단 후 용접부에서 측정한 응력은 항복응력 대비 25%수준의 낮은값을 보였다. 그러나 배관재가 장기간 고온환경에 노출되었고 용접금속 내부의 균열이 발생한 상태에서 측정하였기 때문에 용접잔류응력은 상당부분 해소되어 상대적으로 낮은 응력값이 얻어진 것으로 판단된다.

  • PDF

Electrochemical Sensor for Non-Enzymatic Glucose Detection Based on Flexible CNT Fiber Electrode Dispersed with CuO Nanoparticles (산화구리 나노입자가 분산된 CNT fiber 유연 전극 기반의 글루코스 검출용 비효소적 전기화학센서)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.52-57
    • /
    • 2023
  • This study is a basic research for the development of high performance flexible electrode material. To enhance its electrochemical property, CuO nanoparticles (CuO NPs) were introduced and dispersed on surface of CNT fiber through electrochemical deposition method. The CNT fiber/CuO NPs electrode was fabricated and applied to electrochemical non-enzymatic glucose sensor. Surface morphology and elemental composition of the CNT fiber/CuO NPs electrode was characterized by scanning electron microscope (SEM) with energy dispersive X-ray spectrometry (EDS). And its electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. The CNT fiber/CuO NPs electrode exhibited the good sensing performance for glucose detection such as high sensitivity, wide linear range, low detection limit and good selectivity due to synergetic effect of CNT fiber and CuO NPs. Based on the unique property of CNT fiber, CuO NPs were provide large surface area, enhanced electrocatalytic activity, efficient electron transport property. Therefore, it is expected to develop high performance flexible electrode materials using various nanomaterials.

Degradation Evaluation of 1Cr-0.5Mo Steel using Barkhausen Noise (바크하우젠 노이즈에 의한 1Cr-0.5Mo 강의 열화도 평가)

  • Kim, Min-Gi;Park, Jong-Seo;Lee, Yun-Hee;Kim, Cheol-Gi;Ryu, Kwon-Sang
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.4
    • /
    • pp.136-140
    • /
    • 2011
  • Mechanical properties of degraded materials must be measured for evaluating the integrity of the facilities operating at high temperature. In fact it is complicated to obtain the different degraded specimens from an operating facility. Specimens of 1Cr-0.5Mo steel prepared by the isothermal heat treatment at $700^{\circ}C$ were tested, which has been widely used as tubes for heat exchangers and as plates for pressure vessels. The magnetic properties and Rockwell hardness (HRB) were measured at room temperature. The peak interval of Barkhausen noise envelope (PIBNE), coercivity, and hardness decreased with the increase of degradation. The magnetic and mechanical softening of matrix is likely to govern the properties of the specimen more than the hardening of grain boundary by carbide precipitations. The degradation of test material may be determined by the linear correlation of PIBNE and HRB. Degradation of 1Cr-0.5Mo steel could well be nondestructively evaluated by PIBNE measured with surface type probe.

Experimental Study on Improving Compressive Strength of MWCNT Reinforced Cementitious Composites (MWCNT 보강 시멘트 복합체의 압축강도 향상에 대한 실험적 연구)

  • Kang, Su-Tae;Park, Soon-Hong
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.63-70
    • /
    • 2014
  • This experimental study was intended to improve the compressive strength of multi-walled CNT reinforced cementitious composites with efficiency. The variables considered are the degree of sonication, the amount of surfactant, the replacement ratio of silica fume, etc. Optical microscope informed that fiber dispersion of CNT was improved with the increase of sonication time, and the compressive strength was proved to be enhanced as the degree of sonication increased. When superplasticizer as a surfactant had SP/CNT ratio of 4~6, the best improvement in strength was obtained. Silica fume was shown to produce the highest compressive strength at 10% replacement. Microstructure of CNT composites was also analyzed; XRD and SEM results indicated that CNT addition hardly changed hydration products and microstructure, and MIP analysis found the reduction of total porosity as well as the increase of nano-pores with the size of tens of nm instead of the decrease of pore distribution in the region of around 10 ${\mu}m$ and 100 nm. The results of microstructure analysis explains that the strength improvement is closely related to physical contribution rather than chemical influence by adding CNT.

Evaluation of Electromagnetic Pulse Shielding Effectiveness and Bonding Performance of Inorganic Paint based on Carbon Material (탄소재료 기반 무기계 도료의 전자파 차폐성능 및 부착성능 평가)

  • Jang, Kyong-Pil;Kim, Sang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.801-807
    • /
    • 2021
  • In various industrial fields and infrastructure based on electronic components, such as communication equipment, transportation, computer networks, and military equipment, the need for electromagnetic pulse shielding has increased. Two methods for applying electromagnetic pulse shielding are effective. The first is construction using shielding materials, such as shielding concrete, shielding doors, and shielding windows. The other is coating shielding paints on non-shielding structures. Electromagnetic pulse shielding paints are made using conductive materials, such as carbon nanotubes, graphite, carbon black, and carbon fiber. In this paint, electromagnetic pulse shielding performance is added to the commonly used water-based paint. In this study, the shielding effectiveness and bonding performance of paints using conductive graphite and carbon black as shielding materials were evaluated to develop electromagnetic pulse shielding inorganic paints. The shielding effectiveness and bonding performance were evaluated by applying six mixtures composed of different kinds and amounts of shielding material. The mixture of conductive graphite and carbon black at a weight ratio of 1:0.2 was the most effective in shielding as 33.6 dB. Furthermore, the mixture produced using conductive graphite only showed the highest bonding performance of 1.06 MPa.

In situ posture of anterior body of Metagonimus yokogawai in experimentally infected dog (개의 실험적 요꼬가와흡충증에서 충체의 자세)

  • 장영기;강신영
    • Parasites, Hosts and Diseases
    • /
    • v.23 no.2
    • /
    • pp.203-213
    • /
    • 1985
  • The in situ posture of anterior body of Metagonimus yokogawai was observed in experimental metagonimiasis of dog. The metacercariae were collected from naturally infected sweetfish by peptic digestion; a total of 8 dogs was orally infected with 10,000 metacercariae respectively. Two dogs were killed on 3 days, 9 days, 4 weeks and 10 weeks after the infection. The postures of worms in histological section of small intestine and of whole worms collected from the fixed intestinal mucosa were examined by light and scanning electron microscope. The results were summarized as follows: 1. The recovery rates of worms were 42.6% on 3 days, 55.0% on 9 days, 33.2% on 4 weeks and 9. 8% on 10 weeks after the infection respectively. 2. In histological sections of small intestine, most of worms were found at intervillous spaces as ovoid sections of posterior body. However, many worms, especially in 3 day-old worms, revealed protruded anterior body in glandular lumens of crypt. Some sections of anterior body were bifurcated or sacculated. 3. The worms collected from fixed intestinal mucosa under dissecting microscope exhibited a variety of postures. Many worms showed flat shapes with a concavity or curvatures. However, in many worms, the anterior body made a single or multiple protrusions. 4. By SEM observation of protruded anterior body, a longitudinal groove was found. 5. The frequency of worms with protruded anterior body decreased in 9 days, 4 weeks and 10 weeks than in 3 day-old worms. The above findings indicated that the anterior body of juvenile and adult M. yokogawai protruded to lumens of glandular crypt by folding their lateral portions to make a reversible tubelike structure. Frequent multiple protrusions were considered to be made to adapt the microniche of glandular crypts of dog intestine.

  • PDF

Pullout Characteristics of Pressure Reinjection-Grouted Reinforcements in Decomposed Granite Soil (화강풍화토 지반에 설치된 압력재주입 그라우팅 보강재의 인발특성)

  • Shim, Yong-Jin;Lee, Jong-Kyu;Lee, Bong-Jik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.61-68
    • /
    • 2012
  • Most widely methods for reinforcement of soil utilized in Korea are anchor method, soil nail method and micro pile method. These methods are classified by the intended use of the structure to be constructed, but the reinforcement of the ground is accomplished contains in common the process of grouting work after inserting the reinforcements. Domestically, gravity grouting has been used mostly so far, but there has always been the risk of insufficient restoration of the loose ground area from the drill holes because the grouting is conducted only by gravity. On the other hand, pressure reinjection grouting may enhance the grouting quality by solving the problem of the existing grouting method considerably since it additionally reinjects grouting through pre-installed tube a certain time after the first grouting. Accordingly, this study evaluated the pullout characteristics by the grouting methods by performing model test on decomposed granite soil, and investigated the support increasing characteristics of reinforcements depending on the curing time, reinjection pressure, and uplift force variation of the pressure reinjection grouting. The result of this research shows that the pressure reinjection grouting demonstrated 1.1~1.3 times of performance of the gravity grouting, and suggests some analysis on optimal water content, reinjection pressure and curing time of the pressure reinjection grouting.

Effect of Crystal Particle Deposition on Morphology of Zeolite Membrane and its Separation Performance (결정입자 도포가 제올라이트 막 구조 및 분리성능에 미치는 영향)

  • Lee, Yong-Taek;Jeong, Heon-Kyu;Jeong, Dong-Jae;Yun, Mi-Hye;Ahn, Hyo-Seong
    • Membrane Journal
    • /
    • v.18 no.3
    • /
    • pp.198-205
    • /
    • 2008
  • A novel technology for homogeneous deposition of zeolite particles on a porous support was developed so that those particles played a seeding role for the growth of zeolite crystals. After the particles were dispersed in water, the aqueous solution was 134 through the bore of a porous tubular support. By keeping the other side of the support in a vacuum, the aqueous solution passed through the pores of the support, leading the particles to be homogeneously deposited on the support. The amount of the deposited particles was investigated by changing the following operating parameters: a particle concentration in the solution, a time for deposition, and the feeding rate of the solution. The amount of the deposited particles increased from 0.0019 g to 0.0208 g as the concentration of the particles was changed from 0.01 wt% to 0.3 wt%, while the feeding rate and the deposition time were kept to 100 mL/min and 4 min, respectively. As the deposition time was varied from 1 min to 4 min, the deposition amount increased from 0.0004g to 0.0019g at the typical condition of the rest parameters. Also, it was observed that the deposited weight increased from 0.0029 g to 0.01 g as the feeding rate increased from 100 mL/min to 300 mL/min. However, the total permeance of water and ethanol decreased through the zeolite membrane as the deposited weight increased.

Analysis of Thermal Shock Behavior of Cladding with SiCf/SiC Composite Protective Films (SiCf/SiC 복합체 보호막 금속피복관의 열충격 거동 분석)

  • Lee, Dong-Hee;Kim, Weon-Ju;Park, Ji-Yeon;Kim, Dae-Jong;Lee, Hyeon-Geon;Park, Kwang-Heon
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.40-44
    • /
    • 2016
  • Nuclear fuel cladding used in a nuclear power plant must possess superior oxidation resistance in the coolant atmosphere of high temperature/high pressure. However, as was the case for the critical LOCA (loss-of-coolant accident) accident that took place in the Fukushima disaster, there is a risk of hydrogen explosion when the nuclear fuel cladding and steam reacts dramatically to cause a rapid high-temperature oxidation accompanied by generation of a huge amount of hydrogen. Hence, an active search is ongoing for an alternative material to be used for manufacturing of nuclear fuel cladding. Studies are currently aimed at improving the safety of this cladding. In particular, ceramic-based nuclear fuel cladding, such as SiC, is receiving much attention due to the excellent radiation resistance, high strength, chemical durability against oxidation and corrosion, and excellent thermal conduction of ceramics. In the present study, cladding with $SiC_f/SiC$ protective films was fabricated using a process that forms a matrix phase by polymer impregnation of polycarbosilane (PCS) after filament-winding the SiC fiber onto an existing Zry-4 cladding tube. It is analyzed the oxidation and microstructure of the metal cladding with $SiC_f/SiC$ composite protective films using a drop tube furnace for thermal shock test.