• Title/Summary/Keyword: 투수계수비

Search Result 376, Processing Time 0.027 seconds

Proposal for the Estimation Model of Coefficient of Permeability of Soil Layer using Linear Regression Analysis (단순회귀분석에 의한 토층의 투수계수산정모델 제안)

  • Lee, Moon-Se;Ryu, Je-Cheon;Lim, Heui-Dae;Park, Joo-Whan;Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.27-36
    • /
    • 2008
  • To derive easily the coefficient of permeability from several other soil properties, the estimation model of coefficient of permeability was proposed using linear regression analysis. The coefficient of permeability is one of the major factors to evaluate the soil characteristics. The study area is located in Kangwon-do Pyeongchang-gun Jinbu-Myeon. Soil samples of 45 spots were taken from the study area and various soil tests were carried out in laboratory. After selecting the soil factor influenced by the coefficient of permeability through the correlation analysis, the estimation model of coefficient of permeability was developed using the linear regression analysis between the selected soil factor and the coefficient of permeability from permeability test. Also, the estimation model of coefficient of permeability was compared with the results from permeability test and empirical equation, and the suitability of proposed model was proved. As the result of correlation analysis between various soil factors and the coefficient of permeability using SPSS(statistical package for the social sciences), the largest influence factor of coefficient of permeability were the effective grain size, porosity and dry unit weight. The coefficient of permeability calculated from the proposed model was similar to that resulted from permeability test. Therefore, the proposed model can be used in case of estimating the coefficient of permeability at the same soil condition like study area.

The Influence of K-ratio and Seepage Velocity on Piping Occurrence (Piping현상 발생에 미치는 투수계수비와 침투유속의 영향에 대한 연구)

  • Huh, Kyung-Han;Chang, Ock-Sung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.129-138
    • /
    • 2008
  • In case of judging the stability of dike or dam structures which need hydraulic interception, the first thing to do is to examine whether a piping phenomenon occurred or not. Generally, dike or dam structures are constructed while layer compacting is executed, so permeability is likely to be anisotropic- different from each other in hydraulic conductivity in the horizontal direction [$k_x$] and hydraulic conductivity in the vertical direction[$k_y$]. This study looked into exit hydraulic gradient and Seepage velocity by conducting an Seepage analysis subsequent to various hydraulic conductivity ratios[k-ratio = ky / kx] and examined the influence on piping by comparing & examining critical Seepage Velocity based on critical hydraulic gradient in theoretical equation and critical Seepage Velocity in empirical equation. As the research result, it was found that hydraulic conductivity ratio operates as a very important factor in case the stability against piping occurrence is considered with the concept of critical hydraulic gradient, but relatively the hydraulic conductivity ratio is very low in its importance in relation to the concept of critical Seepage Velocity.

Hydraulic Properties of Duksan Hot-spring Area (덕산온천 지역의 수리적 성질)

  • 함세영;조병욱;성익환
    • The Journal of Engineering Geology
    • /
    • v.9 no.2
    • /
    • pp.101-118
    • /
    • 1999
  • The pumping test analysis on 28 pumping test data in Duksan hot-spring area was performed using the fractal model, the leaky fractal model, and the steady-state dual-porosity fractal model. The fractional flow dimension 1.9 or 2.0 was determined in the central put of the hot spring and the fractional flow dimension 1.5-1.7 in the marginal area. For the flow dimension 2.0, the correlation between the transmissivity and the productivity index by the aquifer loss was much better than that between the transmissivity and the specific yield by the total drawdown. On the other hand, for the flow dimension 1.9, the correlation between the generalized transmissivity and the productivity index was very similar to that between the generalized transmissivity and the specific yield.

  • PDF

Relationship between Hydraulic Conductivity and Electrical Conductivity in Sands (사질토의 투수계수와 전기전도도 간의 상관관계)

  • Kim, Jinwook;Choo, Hyunwook;Lee, Changho;Lee, Woojin
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.45-58
    • /
    • 2015
  • The aim of this study is to suggest a semi-empirical equation for estimating the hydraulic conductivity of sands using geoelectrical measurements technique. The suggested formula is based on the original Kozeny-Carman equation; therefore varying factors affecting the Kozeny-Carman equation were selected as the testing variables, and six different sands with varying particle sizes and particle shapes were used as the testing materials in this study. To measure both hydraulic and electrical conductivities, a series of constant head permeameter tests equipped with the four electrodes conductivity probe was conducted. Test results reveal that the effects of both pore water conductivity and flow rate in relation between hydraulic conductivity and formation factor (=pore water conductivity / measused conductivity of soil) of tested materials are negligible. However, because the variations of hydraulic conductivity of the tested sands according to particle sizes are significant, the estimated hydraulic conductivity using the formation factor varies with particle sizes. The overall comparison between the measured hydraulic conductivity and the estimated hydraulic conductivity using the suggested formula shows a good agreement, and the variation of hydraulic conductivity with varying Archie's m exponents is smaller compared with varying porosities.

Prediction of Field Permeability Using by Artificial Neural Network (인공신경망을 이용한 현장투수계수 예측)

  • Kim, Young-Su;Jung, Sung-Gwan;Kim, Dae-Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.97-104
    • /
    • 2009
  • In this study, artificial neural network was performed using the data of soils characteristic value, standard penetration test, and field permeability test of the 12 embankment that are located in the near Nak-dong and Kum-ho river to estimate the coefficient of field permeability of river embankment. The 89 data of total 108, 82% was used in learning step, and the other 19 data was used in estimation step. Also the results of generally used empirical equations were compared with those of artificial neural network for evaluation of application. As results, all of the coefficient of field permeability by empirical equation showed below 0.4 in terms of the coefficient of correlation with the measured values, but the coefficient of correlation of the predicted results by artificial neural network was up 0.8 in the all case. Therefore artificial neural network could predict more the precise field permeability well than the empirical equations.

Permeability Characteristics of Sedimented Clayey Soils (점토퇴적지반의 투수특성 연구)

  • Kim Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.72-77
    • /
    • 2005
  • The oedometer test and the constant rate of consolidtion test were performed using the sedimented clayey soil sample. The characteristics of permeability of the clayey soil such as anisotropy, permeability change index, relation with void ratio, and influencing factors, were investigated from the lab. test results. Analyzing the permeability characteristics, the representative permeability coefficient was proposed.

  • PDF

Time Evolution of Water Permeability Coefficient of Carbonated Concrete (탄산화된 콘크리트의 투수계수에 대한 시간단계별 해석)

  • Yoon, In-Seok;Lee, Jeong-Yun;Cho, Byung-Young;Kim, Young-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1053-1056
    • /
    • 2008
  • Permeability coefficient of concrete is a substantial key parameter for understanding the durability performance of concrete and its micro-structural densification. Many researches to deal with the issue have been accomplished, however, it is very rare to deal with the theoretical study on permeability coefficient in connection with carbonation of concrete and the effect of volumetric fraction of cement paste or aggregate on the permeability coefficient. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on the permeability coefficient of concrete. The purpose of this study is to establish a fundamental approach to compute the permeability coefficient of (non)carbonated concrete. When simulating micro-structural characteristics as a starting point for deriving a model for the permeability coefficient by the numerical simulation program for cementitious materials, HYMOSTRUC, a more realistic formulation can be achieved. For several compositions of cement pastes, the permeability coefficient is calculated with the analytical formulation, followed by a microstructure-based model. Emphasis is on the micro-structural changes and its effective change of the permeability coefficient of carbonated concrete. The results of micro-structural water permeability coefficient model will be compared with results achieved from permeability experiments.

  • PDF

One-dimensional Consolidation Analysis by Estimation of Nonlinear Consolidation Coefficient (비선형 압밀계수 산정에 의한 일차원 압밀해석)

  • Lee, Song;Jeon, Je-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.2
    • /
    • pp.103-113
    • /
    • 2000
  • 기존의 Terzaghi 압밀이론은 상대적으로 연약토층이 두껍지 않고, 초기함수비가 낮으며 적은 유효응력의 증가가 예상되는 곳에 그 적용이 제한되어 있었다. 그 이유는 Therzaghi 압미이론 자체가 미소변형률과 선형적인 압축성 및 투수성등을 기본적인 가정사항으로 내포하고 있기 때문이다. 이러한 가정사항을 극복하고자 Gibson et al. 은 일차원 비선형 유한 변형률 압밀이론에 관한 엄밀해를 제시하였다. 이 이론은 기존의 많은 가정사항들을 극복하여 실제 현상에 더욱 부합하는 예측을 할 수 있는 장점이 있는 반면, 비선형적인 응력-변형 관계, 변형-투수계수 관계의 도입과 좌표변환 및 현장의 시고이력을 그대로 적용하는데 많은 어려움이 있는 것이 사실이다. 본 연구에서는 이러한 비선형 유한형태를 압밀이론을 이용한 압밀현상 예측을 위하여, 비선형적인 응력-변형 관계, 변형-투수계수 관계에 관한 함수식을 구성하고 이를 포함하는 컴퓨터 프로그램을 개발하였다. 개발 프로그램은 많은 폼과 모듈로 구성되어 있는데, 이러한 각각의 폼과 모듈은 GUI 기능의 극대화를 통해 복잡한 이론에 익숙하지 않은 실무자들이 쉽게 본 이론을 이용할 수 있도록 설계 되었다. 또한 개발프로그램은 다양한 하중단계 및 비선형적인 응력-변형 관계, 변형-투수계수 관계에 관한 회귀분석, 각 유효응력 단계별 상이한 비선형 계수 g와 λ를 적용할 수 있으며, 계산을 위한 전처리과정은 물론 계산된 결과를 위한 다양한 후처리과정이 모두 사용자 위주의 GUI 기능을 충분히 갖도록 설계되었다. 개발 프로그램의 검증을 위하여 실제 현장의 계측자료 및 기존 연구문헌상의 결과와 본 개발 프로그램의 예측결과를 비교.분석하였으며, 다양한 간극비 상태의 비선형 계수가 해석결과에 미치는 영향을 알아보았다.

  • PDF

A Study on the Relationship between Void Ratio and Permeability by Constant Strain Rate Consolidation Test (일정변형률 압밀시험을 이용한 간극비-투수계수의 관계 연구)

  • Joo, Jong-Jin;Lim, Hyung-Duk;Lee, Woo-Jin;Kim, Dae-Kyu;Kim, Nak-Kyung;Kim, Hyung-Joo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.3
    • /
    • pp.15-25
    • /
    • 2002
  • The permeability coefficient is one of the fundamental engineering properties of soft clays. Consolidation process as well as migration of pollutants in soil are affected the permeability coefficient, which generally decreases with the reduction in void ratio during consolidation. After Kozeny(1927) and Carman(1956), many researchers have proposed the relationships between void ratio and permeability in such forms as; (1) log e - log k(1+e), (2) e - log k, or (3) log e - log k. Constant rate of strain (CRS) tests was performed with undisturbed samples obtained at Kunsan and Kimhae deposits, which are representative Korean marine clay. From the results of the tests, the relationships were found valid for Kunsan and Kimhae clays. The experimental correlation $C_k=0.5e_o$ was satisfied with Kimhae clay but not with Kunsan clay.

  • PDF

A Infiltration Analysis in Unsaturated Porous Layer with Permeable Sidewalk Block (투수성 보도블록에서의 불포화 투수층 침투 해석)

  • Lee, Jae-Joon;Lee, Ye-Hee;Kwak, Chang-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.905-905
    • /
    • 2012
  • 현재 도시유역의 홍수피해를 경감시키기 위한 방안으로 우수유출 저감시설에 대한 연구가 활발히 진행 중에 있다. 그러나 침투형 우수유출 저감시설의 경우 침투량 산정에 필요한 여러 인자 중 토성에 의해 저감 능력에 많은 차이를 보이고 있으며, 강우시 침투로 인한 토양내 함수비의 변화와 선행강우 조건 등에 의해 정량적인 분석이 어려워 활용도가 미흡한 실정이다. 따라서 본 연구에서는 2009년 국립방재연구원에서 시행한 침투실험 자료의 조건과 동일하게 투수계수 및 형상이 다른 두 종류의 투수성 보도블록 A, B와 토양내 선행강우의 유무에 대하여 표 1과 같이 검증 케이스로 구분하고, 4 가지의 강우강도로 모의 조건을 설정한 후 불포화 투수층의 침투해석을 실시하고 실험결과를 이용하여 모의결과에 대한 검증을 시행하였으며, 모의 결과의 검증을 뒷받침하기 위하여 통계적인 적합도를 나타내는 평균제곱오차(RMSE), 평균편차비율(PBIAS), 모형 효율성 계수(NSE), 지속성 모형효율성 계수(PME)을 산정해 보았다. 검증 결과 그림 1과 같이 투수성 보도블록 B의 형태가 투수성 보도블록 A의 형태보다 적합도가 높게 나타났고, 50mm/hr의 강우강도에서 변동성이 크게 나타났으나, 50mm/hr를 제외한 나머지 강우조건에서 양호한 적합도를 보였으며, 선행강우가 있는 조건이 선행강우가 없는 조건에 비해 높은 적합도를 나타내었다.

  • PDF