• Title/Summary/Keyword: 퇴적암 형성 과정

Search Result 43, Processing Time 0.027 seconds

A Study on Elementary School Students' Perception of Geological Time Concepts: Focusing on the Sedimentary Rock Formation Process (초등학생들의 지질학적 시간 개념에 대한 인식 연구: 퇴적암 형성 과정을 중심으로)

  • Dong-Young Lee
    • Journal of the Korean earth science society
    • /
    • v.45 no.5
    • /
    • pp.482-492
    • /
    • 2024
  • This study aims to investigate how elementary school students understand the process of sedimentary rock formation based on their perception of geological time concepts. The research was conducted with 57 fourth-grade students from U Elementary School in B Metropolitan City. Data were collected using a modified and adapted version of the LIFT (The Landscape Identification and Formation Test) assessment tool developed by Jolley et al. (2012) and structured essay questions based on the interview framework used by Charles and McConnell (2018) on geological landscape formation. The qualitative analysis of the essay responses classified the students into three groups based on their expression of geological time concepts: the "Specific Time Concept" group, the "Vague Time Concept" group, and the "No Time Concept" group. Statistical verification was performed using the scores from short-answer questions about the sedimentary rock formation process. It was found that the "Specific Time Concept" group had a statistically significantly higher understanding of the sedimentary rock formation process compared to the "No Time Concept" group (p= .04). Additionally, instances of underestimation and overestimation of geological ages, as mentioned by Ault (1982), were observed in the specific cases. Furthermore, language networks were formed and centrality analyses were conducted based on the descriptive responses collected from each group. The analysis results showed that the "Specific Time Concept" group had a relatively good understanding of all processes involved in sedimentary rock formation, with geological time concepts well connected to the phenomena. The "Vague Time Concept" group did not have a well-connected understanding of the processes of deposition, compaction, cementation, lithification, and exposure but had a relatively good understanding of geological time concepts. The "No Time Concept" group explained the sedimentary rock formation process mainly focusing on deposition, compaction, and cementation, and had almost no understanding of geological time concepts. Additionally, community analysis using the centrality of time nodes showed that the "No Time Concept" group had difficulty associating the sedimentary rock formation process with the concept of time. Based on these conclusions, suggestions were made to provide insights into geological time.

Origin and Evolution of Leucogranite of NE Yeongnam Massif from Samcheok Area, Korea (삼척지역 북동 영남 육괴에 분포하는 우백질 화강암의 기원 및 진화)

  • Cheong, Won-Seok;Na, Ki-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.16-35
    • /
    • 2008
  • We study metamorphism of metasedimetary rocks and origin and evolution of leucogranite form Samcheok area, northeastern Yeongnam massif, South Korea. Metamorphic rocks in this area are composed of metasedimentary migmatite, biotite granitic gneiss and leucogranite. Metasedimentary rocks, which refer to major element feature of siliclastic sediment, are divided into two metamorphic zones based on mineral assemblages, garnet and sillimanite zones. According to petrogenetic grid of mineral assemblages, metamorhpic P-T conditions are $740{\sim}800^{\circ}C$ at $4.8{\sim}5.8\;kbar$ in the garnet zone and $640-760^{\circ}C$ at 2.5-4.5kbar in sillimanite zone. The leucogranite (Imwon leucogranite) is peraluminous granite which has high alumina index (A/CNK=1.31-1.93) and positive discriminant factor value (DF > 0). Thus, leucogranite is S-type granite generated from metasedimentary rocks. Major and trace element diagram ($R_1-R_2$ diagram and Rb vs. Y+Nb etc.) show collisional environment such as syn-collisional or volcanic arc granite. Because Rb/sr ratio (1.8-22.9) of leucogranites is higher than Sr/Ba ratio (0.21-0.79), leucogranite would be derived from muscovite dehydrate melting in metasedimentary rocks. Leucogranites have lower concentration of LREE and Eu and similar that of HREE relative to metasedimentary rocks. To examine difference of REEs between leucogranites and metasedimentary rocks, we perform modeling using volume percentage of a leucogranite and a metasedimenatry rock from study area and REE data of minerals from rhyolite (Nash and Crecraft, 1985) and melanosome of migmatite (Bea et al., 1994). Resultants of modeling indicate that LREE and HREE are controlled by monazites and garnet, respectively, although zircon is estimated HREE dominant in some leucogranite without garnet. Because there are many inclusions of accessary phases such as monazite and zircon in biotites from metasedimentary rocks. leucogranitic magma was mainly derived from muscovite-breakdown in metasedimenary rocks. Leucogranites can be subdivided into two types in compliance with Eu anomaly of chondrite nomalized REE pattern; the one of negative Eu anomaly is type I and the other is type II. Leucogranites have lower Eu concetnrations than that of metasedimenary rocks and similar that of both type. REE modeling suggest that this difference of Eu value is due to that of components of feldspars in both leucogranite and metasedimentary rock. The tendency of major ($K_2O$ and $Na_2O$) and face elements (Eu, Rb, Sr and Ba) of leucogranites also indicate that source magma of these two types was developed by anatexis experienced strong fractionation of alkali-feldspar. Conclusionally, leucogranites in this area are products of melts which was generated by muscovite-breakdown of metasedimenary rock in environment of continetal collision during high temperature/pressure metamorphism and then was fractionated and crystallized after extraction from source rock.

Review of Numerical Approaches to Simulate Time Evolution of Excavation-Induced Permeability in Argillaceous Rocks (점토질 퇴적암 내 굴착영향영역 투수특성의 시간경과 변화 파악을 위한 수치해석기법에 대한 고찰)

  • Kim, Hyung-Mok;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.519-539
    • /
    • 2020
  • We reviewed numerical approaches to assess a hydraulic properties of excavation-disturbed zone (EDZ)created in argillaceous sedimentary rocks. It has been reported that fractures in the sedimentary rocks containing expansive clays are gradually closing due to swelling and their permeabilities are evolving to the level of in-tact rock, which is known as a self-healing or self-sealing process. The numerical approaches introduced here are capable of simulating spatio-temporal variation of EDZ permeability during long-term operation of a repository by including the self-healing characteristics of fractures, which wa observed in laboratory as well as in-situ experiments, The applicability of the numerical approaches was verified from the comparison to in-situ measurements of EDZ permeability at underground research laboratories.

Properties of Channel and Evolutions of Fluvial Terraces in Odae River (오대천의 특성과 하안단구의 형성과정)

  • Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.3
    • /
    • pp.224-239
    • /
    • 2009
  • This study analyzes the properties of fluvial landforms in the upper and lower reaches and investigates the evolutions of stream and fluvial terrace in the Odae river basin. The lower basin of the river that consist of sedimentary rocks resistant to weathering and erosion processes shows higher altitude, relief and slope than the upper basin that consist of granite less resistant to weathering and erosion processes. The average width of river valley at the lower reaches is one-third to the upper reaches and the average width of river channel at the lower reaches is narrower than at the upper reaches. Based on the OSL age dating, the fluvial terrace T1 formed at the temperature-rising period during the late MIS 2 and T2 formed at the middle MIS 3, interstadial period during the last glacial period. Based on the these results, the average incision rates of Odae river are calculated as 0.205m/ka and 0.269m/ka at the upper granite area and lower sedimentary rocks area, respectively.

An Analysis of the Changes of High School Students' Conceptual Structure about Sedimentary Rocks before and after the Field Trip using the Semantic Network Analysis (언어네트워크분석을 이용한 야외지질학습 전후의 퇴적암에 대한 개념 구조 변화 분석)

  • Park, Kyeong Jin;Chung, Duk Ho;Cho, Kyu Seong
    • Journal of the Korean earth science society
    • /
    • v.34 no.2
    • /
    • pp.173-186
    • /
    • 2013
  • The purpose of the study was to investigate the change of students' conceptual structures about sedimentary rocks through the field trip. A semantic network analysis method was utilized to assess the change. An open-ended questionnaire was developed to assess high school students' knowledge of sedimentary rock including its definition, classification, formation process, and characteristics. Fifteen high school students participated in the field trip of this study. The text data were analyzed using the semantic network analysis method. Results are as follows. First, high school students' conceptual structures about sedimentary rocks were more expanded after the field trip. Second, students' conceptual structures formed a 'small world network' by combining the sub-clusters. Third, the size of students' conceptual structures was decreased after a few month of field trip. Nonetheless, the connection among the clusters remained the same.

A Study on Weathering Processes of Tafoni in Mt. Cheonsaeng, Gumi, the Republic of Korea: Interpretation of Water Content Data using GIS Interpolation Analysis (구미 천생산 타포니의 풍화과정에 관한 연구: GIS 보간법을 활용한 함수율 측정 자료의 해석)

  • Shin, Jae-Ryul;Lee, Jin-Kook;Choo, Chang-Oh;Park, Kyung-Gun
    • Journal of the Korean earth science society
    • /
    • v.36 no.6
    • /
    • pp.543-552
    • /
    • 2015
  • This study examines the processes of rock weathering and tafoni formation targeting tafoni at Mt. Cheonsaeng, Gumi-si, Gyeongsangbuk-do. In the study area, a frequency of tafoni is high in conglomerate and conglomeratic sandstone among regional sedimentary rocks, which means that an initial stage of the formation begins a breakaway of gravel from bedrock and also exfoliation from rock surface. Geomorphologically tafoni have intensively been developed at the southfacing slope with exposed rocks, which means that its formation was favorably controlled by environmental conditions including strong influences of mechanical weathering in winter and chemical weathering in summer times. The results of measuring water content at a tafoni-bearing rock surface using GIS interpolation analysis indicate that moisture rate in/around tafoni is higher than the periphery. Thus, it is considered that moisture distribution at a rock surface plays a role in its formation. Analysis of percipitation and secondary minerals induced by chemical weathering is in progress.

Geological History and Landscapes of the Juwangsan National Park, Cheongsong (국립공원 주왕산의 지질과정과 지형경관)

  • Hwang, Sang Koo;Son, Young Woo;Choi, Jang Oh
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.235-254
    • /
    • 2017
  • We investigate the geological history that formed geology and landscapes of the Juwangsan National Park and its surrounding areas. The Juwangsan area is composed of Precambrian gneisses, Paleozoic metasedimentary rocks, Permian to Triassic plutonic rocks, Early Mesozoic sedimentary rocks, Late Mesozoic plutonic and volcanic rocks, Cenozoic Tertiary rhyolites and Quaternary taluses. The Precambrian gneisses and Paleozoic metasedimentary rocks of the Ryeongnam massif occurs as xenolithes and roof-pendents in the Permian to Triassic Yeongdeok and Cheongsong plutonic rocks, which were formed as the Songrim orogeny by magmatic intrusions occurring in a subduction environment under the northeastern and western parts of the area before a continental collision between Sino-Korean and South China lands. The Cheongsong plutonic rocks were intruded by the Late Triassic granodiorite, which include to be metamorphosed as an orthogneiss. The granodiorite includes geosites of orbicular structure and mineral spring. During the Cretaceous, the Gyeongsang Basin and Gyeongsang arc were formed by a subduction of the Izanagi plate below East Asia continent in the southeastern Korean Peninsula. The Gyeongsang Basin was developed to separate into Yeongyang and Cheongsong subbasins, in which deposited Dongwach/Hupyeongdong Formation, Gasongdong/Jeomgok Formation, and Dogyedong/Sagok Formation in turn. There was intercalated by the Daejeonsa Basalt in the upper part of Dogyedong Formation in Juwangsan entrance. During the Late Cretaceous 75~77 Ma, the Bunam granitoid stock, which consists of various lithofacies in southwestern part, was made by a plutonism that was mixing to have an injection of mafic magma into felsic magma. During the latest Cretaceous, the volcanic rocks were made by several volcanisms from ubiquitous andesitic and rhyolitic magmas, and stratigraphically consist of Ipbong Andesite derived from Dalsan, Jipum Volcanics from Jipum, Naeyeonsan Tuff from Cheongha, Juwangsan Tuff from Dalsan, Neogudong Formation and Muposan Tuff. Especially the Juwangsan Tuff includes many beautiful cliffs, cayon, caves and falls because of vertical columnar joints by cooling in the dense welding zone. During the Cenozoic Tertiary, rhyolite intrusions formed lacolith, stocks and dykes in many sites. Especially many rhyolite dykes make a radial Cheongsong dyke swarm, of which spherulitic rhyolite dykes have various floral patterns. During the Quaternary, some taluses have been developed down the cliffs of Jungtaesan lacolith and Muposan Tuff.

The Distribution and Geomorphic Development of Alluvial Fans along the Bulguksa Fault System in Gyeongju and Ulsan City, Southeastern Korea (한국 남동부 경주 및 울산시 불국사단층선 지역의 선상지 분포와 지형발달)

  • 황상일;윤순옥
    • Journal of the Korean Geographical Society
    • /
    • v.36 no.3
    • /
    • pp.217-232
    • /
    • 2001
  • One of the molt debatable Issues on geomorphological study in Korea should be the discussion over the formation process of gent1e slope surfaces on the piedmont area. In this study, the characteristics of spatial distribution and the formation process of geomorphic surfaces were investigated by classifying the alluvial fans as three geomorphic surfaces alluvial the Bulguksa fault-line The fan surfaces, distributed along the west slue of Bulguksa Mts, consists the confluent alluvial fans continuously along the N-S direction The surfaces of Sincheon-Hyomun district juxtaposed to the Ulsan Bay must be infulenced by sea-level chance during the Quaternary Taken together, these observation suggests that the major four factors contributed to the fan formation 1) rather longer freeze-and-thaw cycle during the Glacial period. 2) the steep mountain slope along the west side of Bulguksa Mts.. which had been resulted from the horizont stress of EAst Sea 3)the tectolinear fault system developed by structural movement along the Bulguksa Fault-line valley. and 4) the erosion-labile characteristics of bedrock In this urea which is consisted of the Bulguksa granite and the sedimentary rock formed in Cretaceous period.

  • PDF

Structural Characteristics and Kinematic Analysis of the Yangsan Fault (양산단층의 구조적 특성과 운동학적 고찰)

  • 장천중;장태우
    • Proceedings of the KSEG Conference
    • /
    • 2002.04a
    • /
    • pp.163-171
    • /
    • 2002
  • 지금까지 양산단층에 대한 운동학적 해석은 단지 지질분포 특성의 차이를 근거로 단순 우수주향이동으로 해석해왔다. 그러나 일반적으로 대규모 단층들은 단계적으로 서로 다른 운동체계에서 복합적인 발달과정을 거치면서 현재의 모습으로 보인다. 따라서 양산단층의 주변 지질구조와 운동학적 관계를 알아보기 위하여 양산단층 주변의 지질분포, 지질구조, 단층주변의 소단층들에 대한 특성을 분석하였다. 양산단층 주변 퇴적암의 층리면 자세는 양산단 층이 동일한 사건의 주향이동으로 형성된 단층예인의 특성이 아니라 서로 다른 응력축의 지배를 받았거나 서로 다른 크기의 운동을 받았음을 암시하고 있다. 또한 단층의 주향을 따라 단층대 폭의 변화를 살펴본 결과 크게 5개의 주기를 가지면서 변화되고 각각의 주기는 약 25-30 km 로 규칙적으로 나타난다. 또한 단층조선이 발달된 소단층의 분석결과들은 양산단층이 한번의 운동으로 발달한 것이 아니라 매우 복잡하고 다양한 사건들을 겪은 다중 변형의 산물임을 지시하고 있다.

  • PDF

Analysis of Slope Stability at the End of OO tunnel being Distributed by Mica Schist (운모편암 분포지인 OO 터널 종점부에서 절토사면의 안전성 분석 연구)

  • Lee, Byung-Joo;SunWoo, Choon
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.287-294
    • /
    • 2009
  • To be design the slope, the area distributed the mica schist which was metamorphosed by shale or mudstone must carefully consider the stability. Mica schist is another unstable rock for slope by schistosity, cleavage, axial plane of a fold etc. In general mica schist contains the swelling clay minerals such as smectite, vermiculite and montmorillonite. These minerals make the slope unstable. At OO tunnel construction area for the rail way of the Kyungbu high speed train, the slope of mica schist is very unstable by the distribution phenomena of the discontinuous plane such as joints which are 1-5 cm spacing and thrust and strike-slip fault. By the drilling core of this area, most RQD have 0-20%.