• Title/Summary/Keyword: 퇴적물 이동

Search Result 370, Processing Time 0.026 seconds

A Two-dimensional Numerical Simulation of Cohesive Sediment Transport in the Mokpo Coastal Zone (목포해역의 점착성 퇴적물 이동에 관한 2차원 수치모의)

  • Choi, Jong-Hwa;Jung, Tae-Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.287-294
    • /
    • 2012
  • Sedimentary environment in coastal zone has been changing due to a large number of coastal structures and continuous coastal development. As a result, the environment has been changing. In particular, the economic and environmental damage can occur due to cohesive sediment transport closely related with the fate of pollutants. Due to large sea wall construction the ebb dominance in the Mokpo coastal waters has been clearer. Cohesive sediment transport was simulated by the EFDC model. The simulated SS showed good agreements with the observed SS. From the sensitivity analysis of sediment parameters, we found out that the erosion rate, the critical shear stresses for erosion and deposition, and the settling velocity are important factors in cohesive sediment transport modeling.

Sedimentary Processes of Fine-grained Sediment around Intake of Pyongtaek Power Plant, West Coast of Korea (평택화력발전소 취수구 주변 해역에서 세립질퇴적물의 운반양상)

  • 류상옥;장진호;최현용
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.4
    • /
    • pp.247-256
    • /
    • 2002
  • Distribution of surface and suspended sediments was studied to understand sedimentary processes of finegrained sediment near the cooling water intake of Pyongtaek power plant on the west coast of Korea. The grainsize of surface sediment during the winter was coarser in the opened northern area than sheltered southern area. During the summer, finer sediment was found in the east (landward) than west due under dominantly the influence of tidal current. The concentration of suspended sediments was higher in the winter than summer and in the mid- to deep waters than surface waters. Asymmetry of tidal current induced net landward transport of suspended sediments. Landward transport of suspended sediments was most significant at the beginning of flood time when water level is low. Net suspended sediment fluxes ranged from 3.4$\times$10$^{-3}$ kg.m$^{-2}$ .s$^{-1}$ to 5.7$\times$10$^{-3}$ kg.m$^{-2}$ .s$^{-1}$ This large landward transport of suspended sediments is attributable to combination of enhanced flow induced by intake of cooling water and artificial structures near the water intake.

혐기성퇴적물에서 비소거동에 미치는 미생물의 영향

  • 이종운;이상우;김경웅;윤정한
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.82-84
    • /
    • 2003
  • 산업화가 가속화되며 독성 중금속에 의한 토양, 지하수 및 하상퇴적물의 오염사례가 증가하고 있다. 지표 산화환경에서의 이들 중금속의 이동 및 거동에 관한 연구는 그간 수차례 수행된 바 있고 이에 관하여 적절한 오염처리기법 개발에 관한 연구도 다수 이루어지고 있다. 그러나 중금속이 심부 환원환경으로 이동한 경우에 대하여는 이들 오염물질의 거동 및 그에 따른 적절한 처리에 관한 연구가 거의 수행된 바 없는 실정이다. (중략)

  • PDF

Characteristics of Seasonal Variation to Sedimentary Environment at the Estuary area of the Nakdong (낙동강 하구역의 계절적인 퇴적환경 변화특성)

  • Yoon, Eun-Chan;Lee, Jong-Sup
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.372-389
    • /
    • 2008
  • In this study, we formed a detailed grid at the estuary area of the Nakdong and collected the surface sediments. Particle size analysis and comparison with existing data were conducted to investigate the characteristics of seasonal and long-term changes in the sediments. As a result of investigation, the distribution of the sediments showed a great change per season and was greatly influenced by the quantity of outfall discharge at the Nakdong estuary barrier and the incident wave climate. The sandy sediments showed dominant movement toward the front of Jinwoodo west of the estuary area of the Nakdong due to the influence of the ENE wave, the annually-dominant wave. And the muddy sediments showed deposition by being moved toward the deep open sea along with a current. The present conditions of the sediments at the estuary area of the Nakdong showed great differences from the results of previous studies.

Characteristics of Sediments in the Kanghwa Tidal Flat on the west coast of Korea (한국 서해 강화 갯벌의 퇴적물 특성)

  • Woo, Han Jun;Bahk, Jang Jun;Lee, Yeon Gyu;Je, Jong Geel;Choi, Jae Ung
    • Journal of Wetlands Research
    • /
    • v.6 no.1
    • /
    • pp.167-178
    • /
    • 2004
  • The southern tidal flat of Kanghwa Island is one of the biggest flats on the west coast of Korea. Tide is typically a semidiurnal with maximum range of about 10m. The tidal flat receives large amount of sediments from Han River system. Surface sediments for sedimentary analyses were sampled at 83 stations in the study area in August 2003. The surface sediments consisted of five sedimentary facies. Generally, sandy mud sediments dominated in the southern tidal flat of Kanghwa Island, whereas sand sediments dominated in channel and subtidal zones of the western part of Kanghwa Island. The area of sandy mud sediment extended to eastward tidal flat compared to sedimentary facies in August 1997. Sedimentary facies analysis of three core sediments from the tidal flat to the south of the Kangwha Island revealed three sedimentary facies: trough-cross-bedded sand, laminated silt, and bioturbated silt. Distribution of the facies in the cores suggested that sedimentation rates has been generally high in the margin of main tidal channel, especially in the east of the Donggeum Island. Twelve-and-half-hour anchoring survey was carried out for measurements of hydrodynamic parameters at Yeomha channel near Choji Bridge(K1) and channel near Donggeum Island(K2) in June 2003. Residual flows indicated strong ebb-dominated tidal currents. Depth-integrated net suspended sediment loads for one tidal cycle were seaward movement with 309,217.9kg/m and 128,123.1kg/m at station K1 and K2, respectively. The higher value of net suspended sediment loads at station K1 suggested that lots of suspended sediments from Han River deposited in the eastern part of tidal flat.

  • PDF

Relationship between the Settling Velocity and the Suspended Sediment Concentration for Fine-Grained Cohesive Sediments (미세-점착성 퇴적물의 침강 속도와 부유사 농도의 관계)

  • 황규남;이태환
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.102-108
    • /
    • 1996
  • 연안매립 및 신항만 건설, 해안선 정비사업 등과 같은 대규모 공사는 인근 해역에서의 해수유동의 변화와 해수의 혼탁도 증가 및 퇴적물의 침식과 퇴적에 의한 해저 지형의 변형을 초래하고, 이로 인해 기존 항로의 매몰과 해양생물 생태계 변화 등과 같은 문제점을 유발한다는 것은 잘 알려진 사실이다. 특히 한국의 서해연안 대부분과 남해연안 일부에 분포되어 있는 미세-점착성 퇴적물은 사질성 퇴적물과는 달리 퇴적물에서 부유된 토사 입자의 침강 속도가 아주 작아서, 파랑과 조류 등과 같은 해수유동에서 의해 쉽게 이동되어 현저한 해저 지형의 변형을 초래한다. (중략)

  • PDF

Role of Wetland Plants as Oxygen and Water Pump into Benthic Sediments (퇴적물내의 산소와 물 수송에 관한 습지 식물의 역할)

  • Choi, Jung-Hyun;Park, Seok-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.436-447
    • /
    • 2004
  • Wetland plants have evolved specialized adaptations to survive in the low-oxygen conditions associated with prolonged flooding. The development of internal gas space by means of aerenchyma is crucial for wetland plants to transport $O_2$ from the atmosphere into the roots and rhizome. The formation of tissue with high porosity depends on the species and environmental condition, which can control the depth of root penetration and the duration of root tolerance in the flooded sediments. The oxygen in the internal gas space of plants can be delivered from the atmosphere to the root and rhizome by both passive molecular diffusion and convective throughflow. The release of $O_2$ from the roots supplies oxygen demand for root respiration, microbial respiration, and chemical oxidation processes and stimulates aerobic decomposition of organic matter. Another essential mechanism of wetland plants is downward water movement across the root zone induced by water uptake. Natural and constructed wetlands sediments have low hydraulic conductivity due to the relatively fine particle sizes in the litter layer and, therefore, negligible water movement. Under such condition, the water uptake by wetland plants creates a water potential difference in the rhizosphere which acts as a driving force to draw water and dissolved solutes into the sediments. A large number of anatomical, morphological and physiological studies have been conducted to investigate the specialized adaptations of wetland plants that enable them to tolerate water saturated environment and to support their biochemical activities. Despite this, there is little knowledge regarding how the combined effects of wetland plants influence the biogeochemistry of wetland sediments. A further investigation of how the Presence of plants and their growth cycle affects the biogeochemistry of sediments will be of particular importance to understand the role of wetland in the ecological environment.

Sediment Trap Studies to Understand the Oceanic Carbon Cycling: Significance of Resuspended Sediments (퇴적물 트랩을 이용한 해양 탄소 순환 연구 동향: 재부유 퇴적물의 중요성)

  • KIM, MINKYOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.145-166
    • /
    • 2021
  • For several decades, sediment traps have served as one of the key tools for constraining the biological carbon pump (BCP), a process that vertically exports particulate organic carbon (POC) and associated biogenic materials from marine primary production in surface waters to the deep ocean interior. In this paper, I introduced the general methods, the current status of global sediment trap studies, and importance of it to understand the deep ocean carbon cycling. Recent studies suggest that sinking POC in the deep ocean are more complex and spatio-temporally heterogeneous than we considered. Especially researches those studied resuspended and laterally transported particles are presented. Researches that used organic (radiocarbon; 14C) and inorganic (Al) tracers to understand the oceanic POC cycling and the significance of resuspended particles are reviewed, and the importance of radiocarbon study by using MICADAS (Mini radioCarbon Dating Systems) is emphasized.

Surface Sediments of the Continental Shelf and Slope off the Southeastern Coast of Korea (한국 동남해역 대륙붕과 대륙사면 표면퇴적물의 분포와 특성)

  • Lee, Chang-Bok;Park, Yong Ahn;Choi, Jin-Yong;Kim, Gi-Beom
    • 한국해양학회지
    • /
    • v.24 no.1
    • /
    • pp.39-51
    • /
    • 1989
  • A total of 139 surface sediment samples, collected from the continental shelf and slope off the southeastern coast of Korea, were analyzed in order to understand their grain-size, mineral composition and organic carbon content. Based on the grain-size characteristics, five surface sedimentary facies were distinguished: sand, clay, mud, sand-mud mixed, and sand-clay mixed facies. The sand facies appears to be composed mostly of relict sand. For mud, most of which seem to be of recent origin, two different sources were suggested, based principally on their areal distribution pattern and the local hydrographic conditions. Heavy mineral composition of the fine-sand size fraction allowed us to distinguish different sand populations from the study area. On the whole, the Hupo Bank sediments showed a high content of garnet, while the sediments from the northern part of the continental shelf were characterized by a relatively high content of metamorphic minerals (kyanite, sillimanite, andalusite, staurolite). Among clay minerals, the most abundant was illite, with chlorite, kaolinite and smectite following in decreasing order. Organic carbon contents in the sediments of the study area were generally high and showed an average value of 1.94%. The sediment grain-size exerted a strong influence on the organic carbon content. The highest organic carbon content, on the other hand, was found in the continental slope sediments.

  • PDF

Sedimentologic Linkage of depositional environments of Han River and Kyunggi Bay, Korea (한강 유역과 경기만 퇴적환경의 연계성)

  • 오재경;방기영
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.225-236
    • /
    • 2003
  • In order to understand the relationship of depositional environment between fluvial and estuarine-embayment in Han River system, including depositional change in main Han River, more than 250 bottom sediment and 70 suspended sediment were analyzed with hydrologic data. Based on the previous data, the study area can be divided into two environment(fluvial and estuarine-embayment) by Singok underwater dam. The gravelly facies occurs in the South and North Han Rivers and sandy and silty facies occupies in the main Han River. Depositional environment of main Han River changed mainly because of limited sediment transport and hydrological condition. In the estuarine-embayment environment, coarse-grained sediments are dominant in tidal channel and of shore whereas fine and poorly sorted sediments are observed in coastal area. During moderate period, relationship between fluvial-estuarine-embayment system is discontinuou s because of flow restriction by artificial construction such as dam and underwater dam, so that each river system characterizes the individual environment. Fluvial and estuarine system is influenced by tide and, thus, transition zone of estuarine- embayment system moves landward. During flooding period, however, each river system is integrated as continuous depositional system by high discharge and, thus, transition zone of fluvial-estuarine-embayment system moves seaward. For further detailed systems about the lower Singok under-water dam, joint research of South-North Korea should be necessary.