• Title/Summary/Keyword: 퇴적물 이동벡터

Search Result 12, Processing Time 0.025 seconds

이동 벡터 모델을 이용한 표층 퇴적물의 이동 경로 분석

  • 김혜진;추용식;성효현
    • Proceedings of the KGS Conference
    • /
    • 2003.11a
    • /
    • pp.19-23
    • /
    • 2003
  • 해안 퇴적 환경의 가장 기본적인 특징은 퇴적물의 입도 특성을 통해 파악할 수 있다. 퇴적물 특성을 정량적으로 표현하는 대표적인 방법은 입자 크기에 대한 값을 이용하여 평균입도(mean size), 분급도(sorting), 왜도(skewness), 첨도(kurtosis) 등의 퇴적물 입도 조직 변수를 구하여 표현하는 것이다. 퇴적 환경에서 입도 분포는 퇴적물의 이동과 퇴적의 동적 상태를 나타내는 기본적인 정보이다. (중략)

  • PDF

Transport Paths of Surface Sediment on the Tidal Flat of Garolim Bay, West Coast of Korea (황해 가로림만 조간대 표층퇴적물의 이동경로)

  • Shin, Dong-Hyeok;Yi, Hi-Il;Han, Sang-Joon;Oh, Jae-Kyung;Kwon, Su-Jae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.2
    • /
    • pp.59-70
    • /
    • 1998
  • Two-dimensional trend-vector model of sediment transport is first tested in the tidal flat of Garolim Bay, mid-western coast of the Korean Peninsula. Three major parameters of surface sediment, i.e., mean grain size, sorting and skewness, are used for defining the best-fitting transport trend-vector on the sand ridge and muddy sand flat. These trend vectors are compared with the real transport directions determined from morphology, field observation and bedforms. The 15 possible cases of trend vectors are calculated from total sediments. In order to find the role of coarse sediments, trend vectors from sediments coarser than < 4.5 ${\phi}$, (sand size) are separately calculated from those of total sediments. As compared with the real directions, the best-fitting transport-vector model is the "case M" of coarse sediments which is the combined trend vectors of two cases: (1) finer, better sorted and more negatively skewed and (2) coarser, better sorted and more positively skewed. This indicates sand-size grains are formed by simpler hydrodynamic processes than total sediments. Transported sediment grains are better sorted than the source sediment grains. This indicates that consistent hydrodynamic energy can make sediment grains better sorted, regardless of complicated mechanisms of sediment transport. Consequently, both transported vector model and real transported direction show that the source of sediments are located outside of bay (offshore Yellow Sea) and in the baymouth. These source sediments are transported through the East Main Tidal Channel adjacent the baymouth. Some are transported from the subtidal zone to the upper tidal flat, but others are transported farther to the south, reaching the south tidal channel in the study area. Also, coarse sediment grains on the sand ridge are originally from the baymouth, and transported through the subtidal zone to the south tidal channel. These coarse sediments are moved to the northeast, but could not pass the small north tidal channel. It is interpreted that the great amount of coarse sediments is returned back to the outside of the bay (Yellow Sea) again through the baymouth during the ebb tide. The distribution of muddy sand in the northeastern part of study area may result from the mixing of two sediment transport mechanisms, i.e., suspension and bedload processes. The landward movement of sand ridge and the formation of the north tidal channel are formed either by the supply of coarse sediments originating from the baymouth and outside of the bay (subaqueous sand ridges including Jang-An-Tae) or by the recent relative sea-level rise.

  • PDF

A study on the sedimentation in the vicinity of the groins near harbor (항만 인근 해안의 인공 구조물 주변 퇴적 작용 분석)

  • Kim Hye-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.179-183
    • /
    • 2006
  • As there are many human activities in the coastal regions, various facilities and coastal engineering structures for protecting beach have been built. Dredging work, reclamation and harbor construction have caused the topography of sea floor to change rapidly. So sedimentation in the vicinity of the groins has get dull and the serious aspects sometimes turn up. Analyzing the surface sediments with transport vector model is one of the good methods to understand the sedimentation in the vicinity of the groins. I analyzed the transport vector of the surface sediments in the vicinity of the groins at the region where serious beach erosion happens near Pohang harbor.

  • PDF

Exploring the Applicability of Grain Size Trend Analysis to Understanding the Morphological Responses of the Deltaic Barrier Islands in the Nakdong River (낙동강 삼각주연안 사주섬의 지형변화에 대한 입도경향 분석의 활용도 탐색)

  • Kim, Sung-Hwan;Rhew, Ho-Sahng
    • Journal of the Korean association of regional geographers
    • /
    • v.13 no.2
    • /
    • pp.119-128
    • /
    • 2007
  • Grain-size trend analysis is the methodology to obtain the net sediment transport pattern from the spatial trends of grain size parameters. It has the potentials to be an effective tool to address the morphological changes of the deltaic barrier islands in the Nakdoog River once we make sure net transport patterns inferred from grain size trend analysis represent the morphological evolution patterns. This research aims to investigate the applicability of the net transport patterns obtained by 'transport vector', proposed by Gao and Collins(1992), to understanding the morphological changes of the Nakdong River deltaic barrier islands. The results indicate that the net transport directions are overall in concordance with the morphological evolution patterns; however, the level of concordance is low in the island with fast growing rate. The reasons may be match or mismatch of temporal scales involved between processes represented by net transport patterns and morphological change analyzed or the rate of morphological change. Consequently, the application of grain size trend analysis in analyzing the morphological changes of deltaic barrier islands requires the careful consideration of temporal scales involved.

  • PDF

Transport Paths of Nearshore Surface Sediment on Coast of East Sea, Korea (동해 연안 표층퇴적물의 이동경로)

  • 유규철;오재경
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.50-55
    • /
    • 1999
  • Gao and Collins method (two-dimensional sediment transport trend-vector model) using grain-size parameters (mean grain size, sorting coefficient, and skewness) calculated by the statistical moment method is introduced to understand semi-quantitatively the sandy and surficial sediment transport trends on a coast of the East Sea. The result is the sediment transport vectors which indicate transport paths of surficial sediment by wave-induced currents. The corresponding morphological feature is a spit developed at the mouth of the Nam¬dae stream, which is a resultant sediment transported by longshore current and is blocking the circulation of ocean. After this, it is thought that seasonal research and hydrodynamic measurements are needed for verification of the results.

  • PDF

Grain-Size Trend Analysis for Identifying Net Sediment Transport Pathways: Potentials and Limitations (퇴적물 이동경로 식별을 위한 입도경향 분석법의 가능성과 한계)

  • Kim, Sung-Hwan;Rhew, Ho-Sahng;Yu, Keun-Bae
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.4
    • /
    • pp.469-487
    • /
    • 2007
  • Grain-Size Trend Analysis is the methodology to identify net sediment transport pathways, based on the assumption that the movement of sediment from the source to deposit leaves the identifiable spatial pattern of mean, sorting, and skewness of grain size. It can easily be implemented with low cost, so it has great potentials to contribute to geomorphological research, whereas it can also be used inadequately without recognition of its limitations. This research aims to compare three established methods of grain-size trend analysis to search for the adequate way of application, and also suggest the research tasks needed in improving this methodology 1D pathway method can corporate the field experience into analyzing the pathway, provide the useful information of depositional environments through X-distribution, and identify the long-term trend effectively. However, it has disadvantage of the dependence on subjective interpretation, and a relatively coarse temporal scale. Gao-Collins's 2D transport vector method has the objective procedure, has the capability to visualize the transport pattern in 2D format, and to identify the pattern at a finer temporal scale, whereas characteristic distance and semiquantitative filtering are controversial. Le Roux's alternative 2D transport vector method has two improvement of Gao-Collins's in that it expands the empirical rules, considers the gradient of each parameters as well as the order, and has the ability to identify the pattern at a finer temporal scale, while the basic concepts are arbitrary and complicated. The application of grain sire trend analysis requires the selection of adequate method and the design of proper sampling scheme, based on the field knowledge of researcher, the temporal scale of sediment transport pattern targeted, and information needed. Besides, the relationship between the depth of sample and representative temporal scale should be systematically investigated in improving this methodology.

Analysis of Sediment Transport Pathway using the STA Method in Nakdong Estuary (STA 기법에 의한 낙동강 하구역의 토사이동경로 예측)

  • Yoon, Eun-Chan;Lee, Jong-Sup
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.540-552
    • /
    • 2008
  • We predicted to seasonal sediment transport pathway of the estuary area of the Nakdong river using the STA method. The eCSedtrend model was used to flexible application of the previous STA methods. The analysis of the seasonal interpretation of sediment transport pathway showed that the most dominant trend in the Nakdong estuary was CB+ and CB-. In case of CB+, it was identified around the area where the mud sediment was distributed and formed transport vector toward the north. Also, in case of CB-, it was identified mostly around the sand bar where the sand sediment was distributed and generally showed transport vector toward the north even though there was seasonal difference.

Characteristics of Beach Change and Sediment Transport by Field Survey in Sinji-Myeongsasimni Beach (신지명사십리 해수욕장에서 현장조사에 의한 해빈변화와 퇴적물이동 특성)

  • Jeong, Seung Myong;Park, Il Heum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.594-604
    • /
    • 2021
  • To evaluate the causes of beach erosion in Sinji-Myeongsasimni Beach, external forces, such as tides, tidal currents, and waves, were observed seasonally from March 2019 to March 2020, and the surface sediments were analyzed for this period. In addition, the shoreline positions and beach elevations were regularly surveyed with a VRS GPS and fixed-wing drone. From these field data, the speed of the tidal currents was noted to be insufficient, but the waves were observed to af ect the deformation of the beach. As the beach is open to the southern direction, waves of heights over 1 m were received in the S-SE direction during the spring, summer, and fall seasons. Large waves with heights over 2 m were observed during typhoons in summer and fall. Because of the absence of typhoons for the previous two years from July 2018, the beach area over datum level (DL) as of July 2018 was greater by 30,138m2 compared with that of March 2019, and the beach area as of March 2020 decreased by 61,210m2 compared with that of March 2019 because of four typhoon attacks after July 2018. The beach volume as of March 2019 decreased by 5.4% compared with that of July 2018 owing to two typhoons, and the beach volume as of September 2019 decreased by 7.3% because of two typhoons during the observation year. However, the volume recovered slightly by about 3% during fall and winter, when there were no high waves. According to the sediment transport vectors by GSTA, the sediments were weakly influxed from small streams located at the center of the beach; the movement vectors were not noticeable at the west beach site, but the westward sediment transport under the water and seaward vectors from the foreshore beach were prominently observed at the east beach site. These patterns of westward sediment vectors could be explained by the angle between the annual mean incident wave direction and beach opening direction. This angle was inclined 24° counterclockwise with the west-east direction. Therefore, the westward wave-induced currents developed strongly during the large-wave seasons. Hence, the sand content is high in the west-side beach but the east-side beach has been eroded seriously, where the pebbles are exposed and sand dune has decreased because of the lack of sand sources except for the soiled dunes. Therefore, it is proposed that efforts for creating new sediment sources, such as beach nourishment and reducing wave heights via submerged breakwaters, be undertaken for the eastside of the beach.

Tidal Sand Banks in the West Coast of Korea (우리나라 서해안의 조석사주)

  • 최병호
    • Water for future
    • /
    • v.18 no.3
    • /
    • pp.235-241
    • /
    • 1985
  • The predictions of the local and regional sand transport of the offshore tidal sand banks tn the west coast of Korea, east of the Yellow San have been performed on the basis of diagrammatical method suggested by Kenyon et al(1981). There is general agreements between these predictions and the earlier predictions(Choi, 1983) of net regional sand transport paths from the numerical simulation of maximum bottom stress vector during the semidiurnal period due to m2 and m4 tides. Further detailed investigations are proposed for the study of Choongang Chontoe where the predicted net sand transport direction is to the dredged navigation channel.

  • PDF

Field Observation of Morphological Response to Storm Waves and Sensitivity Analysis of XBeach Model at Beach and Crescentic Bar (폭풍파랑에 따른 해빈과 호형 사주 지형변화 현장 관측 및 XBeach 모델 민감도 분석)

  • Jin, Hyeok;Do, Kideok;Chang, Sungyeol;Kim, In Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.446-457
    • /
    • 2020
  • Crescentic sand bar in the coastal zone of eastern Korea is a common morphological feature and the rhythmic patterns exist constantly except for high wave energy events. However, four consecutive typhoons that directly and indirectly affected the East Sea of Korea from September to October in 2019 impacted the formation of longshore uniform sand bar and overall shoreline retreats (approx. 2 m) although repetitive erosion and accretion patterns exist near the shoreline. Widely used XBeach to predict storm erosions in the beach is utilized to investigate the morphological response to a series of storms and each storm impact (NE-E wave incidence). Several calibration processes for improved XBeach modeling are conducted by recently reported calibration methods and the optimal calibration set obtained is applied to the numerical simulation. Using observed wave, tide, and pre & post-storm bathymetries data with optimal calibration set for XBeach input, XBeach successfully reproduces erosion and accretion patterns near MSL (BSS = 0.77 (Erosion profile), 0.87 (Accretion profile)) and observed the formation of the longshore uniform sandbar. As a result of analysis of simulated total sediment transport vectors and bed level changes at each storm peak Hs, the incident wave direction contributes considerable impact to the behavior of crescentic sandbar. Moreover, not only the wave height but also storm duration affects the magnitude of the sediment transport. However, model results suggest that additional calibration processes are needed to predict the exact crest position of bar and bed level changes across the inner surfzone.