• Title/Summary/Keyword: 퇴적기원

Search Result 358, Processing Time 0.022 seconds

Analysis of Principal Storm Surge in the Downstream of Nakdong River (낙동강 하구 표층퇴적물 분석 및 사주 지형변화)

  • Baek, Dong-Jin;Kim, Kang-Min;Lee, Sung-Chul;Lee, Joong-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.36-37
    • /
    • 2018
  • 낙동강 하구역의 퇴적환경은 육성기원 퇴적물과 해성기원 퇴적물에 따라 다양하고 복잡하게 이루어진다. 낙동강 하굿둑이 건설된 이후의 퇴적환경 특성을 파악하기 위하여 해양공학회(2003)와 수자원공사(2016)의 자료를 수집 분석하였다. 2003년과 2016년의 표층퇴적물 분석결과, 낙동강 하구는 전반적으로 사질퇴적물이 우세하고 분급도가 양호하고 중앙입경 보다 조립질의 퇴적물이 우세하게 분포되는 것으로 나타났다. 기존 연구결과와 금회 연구결과로부터 2003년 이후 낙동강 하구 퇴적환경은 평형상태를 이루고 있는 것으로 판단되며, 낙동강 하굿둑 유출 유사량과 외해측 파랑에 의한 영향이 크게 받고, 창조시의 약화된 유속으로 인하여 니질퇴적물의 이동이 줄어든 것으로 판단된다. 또한, 니질퇴적물이 우세한 구간은 사주와 갯골 부근의 간사지로, 이로 인한 낙동강 하구역의 퇴적우세 현상은 지속될 것으로 판단된다

  • PDF

Geochemical Composition and Provenance of Surface Sediments in the Western Part of Jeju Island, Korea (제주도 서부해역 표층퇴적물의 지화학적 조성과 기원 연구)

  • Youn, Jeung-Su;Kim, Tae-Joung
    • Journal of the Korean earth science society
    • /
    • v.29 no.4
    • /
    • pp.328-340
    • /
    • 2008
  • To discriminate the provenance of shelf sediments in the western part off Jeju Island, the textual and elemental compositions were analyzed and compared with the sediments originating from Changjiang and Huanghe Rivers of China and the Korean (Keum) River. The sediments in the study area are composed of coarse silt with a mean pain size of $3.6{\sim}8.5{\phi}$ and their $CaCO_3$ contents ranged from 0.92 to 9.75 wt.%. The ratios of TOC over total nitrogen (TN) showed that the study area sediments contained more organic matters of marine origin than those of terrigenous origin. The high concentration of Fe/Al, Ti/Al and Mn/Al figures were found in the southwestern part near the Changjiang esturay, indicating that it seemed to result from the influence of the Changjiang River. The discrimination diagrams including Sc/Al vs Cr/Th, Th/Sc vs Nb/Co and Ti/Nb vs Th/Sc were thus used as provenance indicators to identify the sediment origins of the western part off Jeju Island. Based on these discriminated diagrams it clearly showed that most of the sediment in the western part were originated from the Huanghe River, but the sediments in the southwestern part near the Changjiang esturay might come from the Changjiang River. In contrast, the sediment samples of the northeastern part showed the higher figures than those of the river sediments and other regions, suggesting that the sediments in the western part off Jeju Island must be originated from diverse sources.

A Review on the Depositional Age and Provenance of the Taean Formation in the Western Gyeonggi Massif (서부 경기육괴에 분포하는 태안층의 퇴적시기와 기원지에 대한 고찰)

  • Choi, Taejin;Park, Seung-Ik
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.347-356
    • /
    • 2019
  • Various studies regarding the sedimentary environment, depositional age, provenance, and metamorphic history have been carried out on the Taean Formation in the western part of Gyeonggi Massif, since the unique detrital zircon age pattern was revealed. This review paper introduces the previous researches on the Taean Formation and discusses the depositional age and provenance. The Taean Formation was traditionally regarded as a Precambrian stratigraphic unit, but recently it is interpreted to be a middle or upper Paleozoic formation due to the occurrence of large amounts of Early to Middle Paleozoic detrital zircons. The Taean Formation consists of metasandstone, argillaceous schist, and phyllite which are mainly made up of quartz and mica. The protoliths are interpreted as turbidites deposited in deep sea fan environment. The Taean Formation has been interpreted to be deposited between the Devonian to Triassic ages given the age differences between detrital zircons and intrusive rocks. There are two opinions that the deposition age is close to the Devonian or the Permian period. The provenance of this formation is supposed to be South China block, Chinese collisional belt, or Gyeonggi Massif. Given the available detrital zircon ages of the Taean Formation and other Korean (meta)sedimentary rocks, the Taean Formation shares major source rocks with Yeoncheon Group and Pibanryeong Unit of the Okcheon Supergroup, but their source regions are not entirely consistent. Considering the existing hypotheses about the depositional timing and provenance, we put weight on the possibility that the Taean Formation was deposited between Permian and Early Triassic periods. However, further studies on the stratigraphy and sedimentary petrology are needed to clarify its definition and to elucidate the provenance.

Distribution Pattern, Geochemical Composition, and Provenance of the Huksan Mud Belt Sediments in the Southeastern Yellow Sea (황해 남동부 흑산니질대 퇴적물의 분포, 지화학적 조성 및 퇴적물 기원지)

  • Ha, Hun Jun;Chun, Seung Soo;Chang, Tae Soo
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.289-302
    • /
    • 2013
  • In order to determine the provenance of the Huksan Mud Belt sediments in the southeastern Yellow Sea, the major and rare earth elements of the same sediments were analyzed. The surface sediments were sampled from top of piston-cores and box-cores taken at 51 sites within the Huksan Mud Belt. With the mean grain size of $5-6{\phi}$, the sediments of the study area are mud-dominated. The spatial distribution patterns show that silt content is high in the northern Mud Belt, whereas clay content increases as it moves toward the southern Mud Belt. Interestingly, the geochemical compositions both of major and rare earth elements have resulted in differences of sediment provenance. Among the major elements, plots of Fe/Al vs. Mg/Al ratios, $Al_2O_3$ vs. MgO ratios, and $Al_2O_3$ vs. $K_2O$ reveal that the Huksan Mud Belt sediments are dominated by the Korean river-derived sediments. However, the characteristics of rare earth elements infer sediments originating from the Chinese rivers. This discrepancy between the above provenances is attributed to the different contributory factors in the content of chemical elements. Considering strong correlation between major elements with grain sizes, the contents of the major elements are thought to be influenced by the grain size. However, there is a weak correlation between rare earth elements and grain sizes. The behaviour of rare earth elements may be controlled by heavy minerals, rather than grain sizes. Further study requires to solve the discrepancy arose from the difference in applied chemical tracers.

Geochemical Characteristics of the Outer-Shelf Muddy Sediments in the East China Sea (동중국해 외대륙붕해역 니질퇴적물의 지화학적 특성)

  • Youn, Jeung-Su;Byun, Jong-Cheol;Kim, Yeo-Sang
    • Journal of the Korean earth science society
    • /
    • v.27 no.2
    • /
    • pp.198-208
    • /
    • 2006
  • To investigate the provenance of outer-shelf mud patch in the East China Sea, the geochemical compositions were analyzed and compared with those of Chinese rivers sediments. The mud sedimentary facies are distributed in the central region and sandy mud facies are also widely distributed around the study area. The major elements (Fe, Mg, K, Ti, and Mn) show strong positive correlation with Al, and trace elements also indicate the same characteristics; hence, clay minerals are likely to be the promising host for those elements. The high concentration of Fe, Ti, and Mn elements are found in the western middle part near the Changjiang estuary, indicating that it seems to result from the influence of the Changjiang River. Elemental ratios including Sc/Al, Ti/Nb, Th/Sc, Cr/Th, Nb/Co, and Th/U were thus used as provenance indicators to identify the sediment origins of the East China Sea. The discrimination diagrams clearly show that most of the sediment in the northern part are originated from the Huanghe River, while the muddy sediments in the western part near the Changjiang estuary might come from the Changjiang River, suggesting that the outer-shelf muddy sediments of East China Sea are originated from diverse sources.

REE and Sr-Nd Isotopic Composition of the Shelf Sediments around Jeju Island, Korea (제주도 주변 대륙붕 퇴적물의 REE와 Sr-Nd 동위원소 조성)

  • Kim, Tae-Joung;Youn, Jeungsu
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.481-496
    • /
    • 2012
  • REE, major and trace elements, and Sr-Nd isotopic ratios of surface sediments around Jeju Island were analyzed for identifying the origin of the sediments. The Chemical Index of Alteration (CIA) between 44.2 to 68.9 (av. 59.4) shows a similarity with the Huanghe sediment. The most sediments found within the study areas show a very similar chondrite-normalized REE pattern that has enriched LREE ($La_{(N)}/Sm_{(N)}$ >3) and small negative Eu anomaly, typically of average shales. The UCC-nornalized REE patterns of the southwestern offshore sediment samples show a very similar pattem with the Changjiang sediment with enriched in most REE and more convex REE pattern than those of the Huanghe and Keum rivers sediments, which indicates that the Changjiang River's suspended sediments have been transported into the western part of Jeju Island. The $^{87}Sr/^{86}Sr$ isotopic ratios vs ${\varepsilon}_{Nd}(0)$ values were thus used as a tracer to discriminate the provenance of sediments in the study area. Based on the discriminated diagram, it clearly showed that most sediments in the western and northwestern part were closely plotted with sediments of the Huanghe River. However, the sediments in the southwestern part near the Changjianf estuary were closely plotted with submerged delta sediments of the Changjiang River. In contrast, the sediment samples of the northeastern part showed discriminative figures from those of the Chinese rivers. It suggests that sediments around Jeju Island must be originated from diverse sources.

Characteristics and Provenance of Heavy Minerals in the Yellow Sea and Northern East China Sea (황해 및 동중국해 북부의 중광물 특성과 기원)

  • Koo, Hyo Jin;Lee, Bu Yeong;Cho, Hyen Goo
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.505-515
    • /
    • 2020
  • The Yellow Sea and northern East China Sea contain a transgressive sand layer. Numerous sedimentary studies have been carried out in these sand deposits using seismic exploration and core sediment techniques, but few mineralogical studies have been reported. The major purposes of this study are to describe the distributions of heavy minerals throughout the Yellow sea and northern East China Sea and to identify the provenance of coarse sediments using the mineral chemistry. Eight heavy mineral species were identified in the study area (epidote, amphibole, garnet, zircon, sphene, rutile, apatite, and monazite). The study region was divided into six areas (areas A to F) based on heavy mineral distributions and sampling locations. In mineral chemistry, the amphiboles present are classified as edenite and hornblende in the calcic amphibole group, and the garnets are identified primarily as almandine in the pyralspite group. A combined data set of heavy mineral distributions and mineral chemistry showed clear differentiation of the characteristics of the six classified areas, enabling determination of provenance and sedimentary environment. Area A and B in the eastern Yellow Sea were originated from the Korean peninsula, and these regions showed different heavy mineral characteristics by tidal current and coastal current. In addition, monazite was only found in the area B and could be used as an indicator from the southwestern Korean peninsula. Area D and E in the western Yellow Sea showed the characteristics of sediments originating from the Huanghe, and sediment in the area E was derived from the Changjiang. Area C in the northern East China Sea appeared to have Changjiang-origin sediment, and abundant apatite indicated that area C was formed close to the Last Glacial Maximum.

Major Elemental Compositions of Korean and Chinese River Sediments: Potential Tracers for the Discrimination of Sediment Provenance in the Yellow Sea (한국과 중국의 강 퇴적물의 주성분 원소 함량 특성: 황해 니질 퇴적물의 기원지 연구를 위한 잠재적 추적자)

  • Lim, Dhong-Il;Shin, In-Hyun;Jung, Hoi-Soo
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.311-323
    • /
    • 2007
  • The Yellow and East China seas received a vast amount of sediment $(>10^9ton/yr)$, which comes mainly from the Changjiang and Huanghe rivers of China and the Korean rivers. However, there are still no direct sedimentological-geochemical indicators, which can distinguish these two end-members (Korean and Chinese river sources) in these seas. The purpose of this study is to provide the potential geochemical-tracers enabling these river materials to be identified within the sediment load of the Yellow and East China seas. The compositions of major elements (Al, Fe, Mg, K, Ca, Na, and Ti) of Chinese and Korean river sediments were analyzed. To minimize the grain-size effect, furthermore, bulk sediments were separated into two groups, silt $(60-20{\mu}m)$ and clay $(<20{\mu}m)$ fractions, and samples of each fraction were analyzed for major and strontium isotope $(^{87}Sr/^{86}Sr)$ compositions. In this study, Fe/Al and Mg/Al ratios in bulk sediment samples, using a new Al-normalization procedure, are suggested as an excellent tool for distinguishing the source of sediments in the Yellow and East China seas. This result is clearly supported by the concentrations of these elements in silt and clay fraction samples. In silt fraction samples, Korean river sediments have much higher $^{87}Sr/^{86}Sr$ ratio $(0.7229{\sim}0.7253)$ than Chinese river sediments $(0.7169{\sim}0.7189)$, which suggests the distribution pattern of $^{87}Sr/^{86}Sr$ ratios as a new tracer to discriminate the provenance of shelf sediments in the Yellow and East China seas. On the basis of these geochemical tracers, clay fractions of southeastern Yellow Sea mud (SEYSM) patch may be a mixture of two sediments originated from Korea and China. In contrast, the geochemical compositions of silt fractions are very close to that of Korea river sediments, which indicates that the silty sediments of SEYSM are mainly originated from Korean rivers.